Taylor and Smith, of course, had been speaking at cross-purposes. The Computer Science Lab was a collection of engineers who weighed everything pitilessly against the question: How will this get us closer to our goal? They had committed themselves to developing Xerox's office of the future, and anything that diverted their attention or served an alternative goal had to be discarded or obliterated. To them the glorification of fluke and luck so cherished by the creative artist seemed intolerably wasteful of time and effort. Even Alan Kay tested their patience with his penchant for drifting haphazardly through Ideaspace; but compared to Alvy Ray Smith, Alan Kay was as sober as a Presbyterian elder. Smith soon rewarded Shoup's faith that someone rooted in both art and science would make a powerful contribution to Superpaint's evolution. His most important refinement had to do with the way users adjusted colors on the screen. As an engineer, Shoup had built a system with elements only another engineer could love: The controls were a set of "sliding levers" that could adjust only an image's red, green, and blue values. The process lacked a certain necessary delicacy, almost like forcing composers to do without sharps or flats.
"Artists don't think that way," Smith informed him.
As he explained later, "Dick could get any color he wanted, but he had to think in terms of how you might get pink out of red, green, and blue." (How tricky this is can be imagined by anyone who has tried to adjust the flesh tones on an old color TV using only the three primary color dials.) Making the system intuitively useful for artists, Smith recognized, required an additional set of controls. "If I gave you controls for hue, lightness, and darkness, you would know you could take red and make it lighter: That's pink." He called the new categories "hue, saturation, and value" and labeled the system the "HSV transform." (Smith's additional categories, or similar ones, survive in most video animation systems to this day.)
But Smith's devotion to Superpaint hastened Shoup's estrangement from his CSL comrades by making his machine seem little more than a toy for longhairs. Smith monopolized the device for hours at a stretch, twisting video images into intricate abstract forms. He would take a color test pattern and step it through a programmed sequence of the 256 color values so it resembled the skin of a chameleon placed against a kaleidoscopic background, or bleed the pattern across the screen in a psychedelic wash. "I took a girlfriend's face and did some tricks with it, halved it down the middle and reflected it and halved that again so it was a four-way reflected face that's hardly recognizable anymore, but still has something organic about it."
Today such manipulation is commonplace to the point of triteness, the stuff of TV special effects. But in 1974 no one had ever seen anything like it. Soon Smith was inviting friends from San Francisco's creative demimonde down for demos that turned into all-night Superpaint "jam sessions." One graphics artist, an Iowan named Fritz Fisher, had been invited out to PARC by Shoup and Smith to give a talk about his work. He took one look at Superpaint and returned home only long enough to pack his bags. Back in Palo Alto he enrolled at Stanford and got a job as night watchman at CSL. For the next few years he would attend class in the daytime and tend the lab all night. "We'd come in the next morning and there'd be these elaborate designs on the machine," Shoup said, "and we'd know Fritz had been at it."
Among PARC scientists, however, the reaction was much less fervent, except among a handful of empathetic staff members who joined Smith in the wee hours, some displaying the furtive signs of experimental drug use. ("That was one of the dividing lines," Smith later remarked jocularly: "You'd just look at people and know if they were dopers or not. If they worked all night and had a lot of fun, they were probably doing dope.") Smith kept careful note of everyone's reaction to Superpaint from his vantage point in the color graphics lab, which occupied a long narrow room strategically situated at the nexus of Building 34's traffic flow- since seven doors opened into it, the passage of personnel rarely ceased.
"Here's our stuff on the screen, mind-blowing stuff," he remembered. "Most people would stop and look. Then there were other people who would walk right by and never look. And I'd always wonder, what's with those guys?"
Inside CSL, the person who set the standard of indifference to Superpaint was, unsurprisingly, Butler Lampson. Lampson’s visionary temperament was grounded in a unique pragmatism. He was determined to reach the unseen horizon not by great blind leaps—they posed the unacceptable risk of leading one into a dead end—but by a series of small, measured steps. Big leaps required faith; measured steps required only science and a ruler.
"I remember once having a very illuminating discussion with Butler about my dreams for artificial intelligence," said Dan Bobrow, the brilliant specialist in computer languages who had been brought to CSL by Jerry Elkind. "He said, 'Danny, how can you work on something where there's a goal farther out than two years away?' Butler's vision of how you choose projects was to choose those that would tell you in two years if you'd succeeded or failed. He always chose incremental things. I can't recall him ever having what I drink of as a long-term vision. But with his smarts and his good taste he was able to do important next steps in computing and defend them."
Among Lampson’s objections to color graphics was that it was not by anyone's definition an incremental thing. "We couldn't afford color at the time because we couldn't afford the memory to drive a color frame buffer," he was still insisting many years later. "I felt you shouldn't go for it until its quite easy, because otherwise it's going to be a huge distraction."*
Sure, Shoup acknowledged, color was expensive now, but it would be cheap in five or ten years, just like memory. Why not think of it as just another feature of the Time Machine?
Here entered Lampson's other important objection to Superpaint: He was constitutionally unable to imagine color contributing anything other than window-dressing to the office of the future. Something so trivial, he argued, might just as well be ignored until it was not merely cheap, but free.
Shoup s rejoinder was that Superpaint would do much more than enhance the office of the future. "I was looking at a bigger picture: pixel-based imaging in general," he recalled later. The essential struggle was to get the rest of CSL to see video, color, and animation as not just the technologies behind Saturday morning cartoons and Disney films, but as the foundations of a new type of computer graphics.
Given Lampson's influence over Taylor and the rest of the Computer Science Lab, this was destined to be a futile mission. Yet the more Shoup sensed himself becoming marginalized, the more he insisted on going his own way. "We attempted to bring Dick into the mainstream, but Dick knew what he wanted to do, and it wasn't that," Lampson recalled. As for Taylor, he already considered Shoup an unacceptably reclusive member of a lab he had assembled to serve a shared vision. Instead of joining in the Alto project, Shoup had turned his back. While his own lab colleagues found it hard to work with him, Taylor
*"I feel the same way today about 3-D, which is that for most applications of computing it's quite marginal," he added. (This conversation took place in December 1997.)
complained, he constantly gave demos of Superpaint to outsiders— and "non-technical" outsiders to boot, like Smiths circle of artists and hippies.
As Shoup understood, once you fell out of favor with Bob Taylor there was no coming back. Taylor’s shit list was a cold, forbidding place. He made a few half-hearted attempts rebuild his burned bridges. After the Alto was up and running, he rigged one with a color display. But it was the only color Alto ever seen at PARC and remained forever an object of indifference to most of the engineers in CSL. (Kay's Learning Research Group, always more highly attuned to the content rather than the process of graphical displays, eventually made excellent use of it.) With every year drat passed, Shoup s performance appraisals sounded more sinister. "Dick," one read, "is going to have to find a new home."
One day Taylor walked into the video lab to find Shoup's equipment festooned with handwritten signs warning: "Do Not Touch Wi
thout My Permission." To a manager whose most profound conviction was that his people were all building components of a single common system, this was anathema. He became determined to show Dick Shoup who really owned his precious equipment. One day in late 1974, while Shoup was out of town, he fired the first shot.
The occasion was the broadcast of a television program about the artistic avant-garde entitled Supervisions, which was produced by the Los Angeles public television station KCET. Smith's and Shoup's work on Superpaint had started to win wide notice outside PARC, thanks in part to a tape called "Vidbits" which Smith had compiled from clips of his best work for playing to artists' gatherings all around California. After one such showing, KCET commissioned the two of them to supply some brief color-cycling effects for Supervisions. They had scrupulously insisted that the producers give Xerox screen credit, assuming that the parent company would appreciate the honor.
Instead, Taylor marched into the video lab a day or two after the broadcast and buttonholed Smith. "Xerox wants their logo off every piece of tape," he said. "Right now."
He ordered Smith to screen for him every snippet of videotape in the lab—miles of tape. While Taylor sat next to him for an entire afternoon,
Smith laboriously ran every reel, including every copy of his own "Vid- bits," punching the erase button to excise any frame bearing Xerox's name or trademark. When Shoup returned home he and Smith managed a nervous chuckle over the sheer absurdity of the incident. But in their hearts they knew it presaged worse trouble to come.
Sure enough, a few weeks later, Smith was dismissed—or more precisely, his purchase order was canceled. The word came from Jerry Elkind, who was nominally Smith's boss but had never even spoken to him before. 'We've decided to go with black and white," he said. "This project is over."
Smith was stunned. "You're crazy!" he blurted. "It's going to be all color from here on out, and you guys can own it all! I can't believe you're shutting it down."
"Well," Elkind replied evenly, "it's a corporate decision."
Smith had no choice but to leave. With a fellow artist and Superpaint fanatic, David DiFrancesco, he drove off toward Utah in quest of permission to continue his work on a frame buffer installed at the university there. He failed to get it, but instead received an invitation to set up a video program at the private New York Institute of Technology. The department later transferred en masse to George Lucas's Lucas- film and even later was spun off as Pixar, the studio that produced the hit computer-generated movies Toy Story and A Bug's Life.
Meanwhile, at PARC Shoup now stood as a solitary pariah. One morning on his way into the lab he was stopped by a sympathetic colleague, who told him: "You know, there's a meeting going on about you."
Shoup burst into Taylor's office, interrupting a discussion about dismantling and redistributing his video equipment to other projects. The group fell sheepishly silent until, clearly unwelcome, "I went down to my lab and waited," he recalled. A short while later the verdict arrived: His lab space was to be taken away. He was to pack up his taping and recording equipment and turn it over to the PARC audiovisual crew, which would use it to compile a taped archive of administrative meetings.
Shoup's eviction from CSL was answered by a rescue effort by the Systems Science Lab, which secured him a transfer into Kay's group and permission to reassemble most of his equipment.
But the computer side of PARC never really embraced color as an integral part of its mission. Within a couple of years, when it became clear that Xerox would not support his work on another generation of video graphics, Shoup left PARC. Forming his own company, Aurora Systems, he developed a commercial system that produced the first animated TV weather maps and video logos.
The final irony came in 1983, when the National Academy of Television Arts and Sciences awarded a technical Emmy jointly to Dick Shoup and Xerox Corporation in recognition of Superpaint’s role as a pioneering technology of video animation. Shoup went to the ceremony in New York, where he sat at the honorees' table with his invited guest Alvy Ray Smith and a nameless functionary dispatched by headquarters to accept the award on the company's behalf. The television academy had the foresight to prepare two Emmy statuettes. Shoup took his home. After spending a cordial evening with Shoup, the staff man took the other with him back to Stamford, where it vanished into the corporate archives. "I never did find out what they did with it," Shoup said.
CHAPTER 17
The Big Machine
T
he one thing I've learned is you don't ever go into a completely new situation like this one alone," Harold Hall told David Liddle one day early in 1975. "I need someone to watch my back. So why don't you come with me?"
Despite Hall's melodramatic come-on, David Liddle did not need to be asked twice, not when the pitch was to join a newly created division to turn PARC technology into actual Xerox products. Of course he knew that Hall, who had been appointed its boss, was right to be wary. There was precious little evidence that headquarters understood the scale of the undertaking it had asked this new division to assume, and no guarantee it ever would. Who knew what enemies might lurk in the woods?
But the pluses tipped the balance. Liddle and Hall enjoyed a close and mutually respectful working relationship. And the opportunity was spectacular. Hall needed him not merely to help merchandise PARC's technology, but to assemble its disparate pieces into a coherent whole—to create an entirely new product line out of a magnificent jumble.
"That was it," Liddle recalled. "I looked at all this cool stuff getting done and I did not see how it was going to get to market. There was so much great raw material just piled up there. My idea was to sit down and think through an architecture—because of course these things were all done somewhat independendy and ad hoc at PARC, as you always want to do in a research setting. Also, I frankly felt that if I didn't go and do it they'd probably assign some inappropriate person who wouldn't really get PARC and what we were trying to do."
More than five years would pass before this fledgling division would bring its first major product to market. As Hall had feared, he did not survive the first purge. But Liddle did. When the Systems Development Division completed its arduous work and introduced the legendary Xerox Star to the world, Liddle would be the man in charge.
The Systems Development Division had its genesis in Xerox's drive to expand its brand name beyond copiers and into new lands of office equipment. This market, like the one for mainframe computers, was dominated by IBM, if not quite as unassailable Xerox actually was beginning to make serious headway against Big Blue with a product line of word processors, fax machines, and electronic printers bearing its well- respected nameplate. But these devices were at best state-of-the-art, not ahead of the art.
In 1974 a headquarters task force concluded there might be more opportunities yet in manufacturing more advanced office "systems" for sale to large corporate customers with extensive and far-flung operations. The committee recommended the formation of a new division to serve this market. George Pake and Jack Goldman, understanding that this was their best chance to get PARC's technology into the commercial marketplace, maneuvered to place the unit under someone with a working knowledge of the territory.
In this they succeeded, up to a point. The new Systems Development Division, or SDD, was to report not to Goldman but to another transplanted Ford finance man, Donald Lennox, who supervised Xerox product development out of an office in Webster. But on January 1, 1975, Harold Hall, whose entire Xerox career had been spent at PARC, was named to run it.
Hall had trained before the war as a nuclear physicist, but it had been many decades since he had plied that trade. Instead he had fashioned a long career as a professional research manager, touching down at places like the Livermore Weapons Laboratory (under Edward Teller), ARPA, the Aeronutronics division of Ford, and a high-tech division of Singer before landing at PARC in 1972. As he put it later with characteristic self- effacement, after s
o many years working among exceptionally brilliant scientists "I had developed and honed the skill of making myself useful to people whose intellectual gifts dwarfed my own."
A native South Dakotan, he had emerged from grinding poverty on a Depression-era farm to become an exemplary corporate bureaucrat with a charming personality and a store of fascinating yarns about his work on the nuclear weapons program during and after the war. When in 1971 he got nudged out of his Singer vice presidency by someone else's power play, he had called upon his old Ford colleague Jack Goldman for a job. Goldman sent him to PARC because he considered him the perfect foil for George Pake, who he would serve almost continuously as a loyal lieutenant for the next decade.
Pake initially assigned Hall to take over the Systems Science Lab from Bill Gunning, who yearned to get back to hands-on research. True to his instincts, as SSL chief Hall familiarized himself with the work being done in his lab just enough to be genially manipulated by Alan Kay and Adele Goldberg. "I knew better than to pretend knowledge I lacked, the surest way to be rejected by PARC," he said, joking that the job seemed to consist chiefly of affixing his signature to Alan Kay's expense reports.
Athletic, silver-haired, and free-thinking, Hall led a contented life raising his five accomplished children in the intellectually stimulating atmosphere of Palo Alto, displaying such neatly constrained ambitions that he could hardly pose a threat to anyone above him in the Xerox organizational chart. What he found particularly gratifying about his new assignment was that it came with a vice presidency—the one corporate title he had aspired to since the day he lost his last one at Singer.
Dealers of Lightning Page 29