Autopilot

Home > Nonfiction > Autopilot > Page 8
Autopilot Page 8

by Andrew Smart


  Anthropologist James C. Scott describes the rise of scientific forestry in his influential book Seeing Like a State. The scientific foresters replaced the complex ecosystems in the natural forests with simplified “scientific” forests for maximizing yields of certain types of timber. They planted the forests to resemble an Excel spreadsheet: row upon row of neatly-ordered trees all of the same type. A monoculture. In the first generation, this all worked marvelously well: yields were up, the timber was easy to harvest, and the bureaucrats could efficiently count the trees in order to make predictions about the future.

  Inevitably, the forests revolted. Within one generation, yields for some trees were down thirty percent. The perplexed Germans invented a word for what happened: Waldsterben (forest death). This was when the nutrient cycle of the soil was altered beyond the point of repair by the monoculture trees. In the worst cases, the entire forest died. The reason “scientific forestry” failed was due to total scientific ignorance of how forests work.

  Forests, too, are self-organizing systems. Their health is maintained by an extremely complex interaction between diverse types of soil, animals, insects (such as ants), plants, fungus, trees, and weather. By disrupting this exquisitely balanced and harmonious system through uniformity and attempting to make the forest “productive,” scientific forestry caused the forest ecosystem to collapse. Surely the principles of “scientific forestry” were consigned to history’s ash heap? Consider Apple. Surely Apple, the most valuable company in the world, the maker of the coolest digital devices known to humanity, eschews the antiquated principles of German scientific forestry?

  You have likely heard of the abysmal working conditions at the Chinese factories that produce nearly all our electronics. Your passing concern might have been assuaged by the recent announcements that the factories are attempting to make work at these places more worker-friendly. Apple’s products are manufactured by a Taiwanese company in China called Foxconn. Foxconn proudly employs what are called “scientific management” techniques for its millions of workers.

  The rationale for doing this is always the same: a small group of powerful people wish to control systems that are intrinsically uncontrollable so that these systems can be made to do things they would not otherwise do. These short-term solutions are always greeted as a revelation. They certainly produce stellar short term results.

  But whether we are talking about forests or human beings, the scientific fact about these systems is that they are self-organized, and therefore an external agent cannot control them. Forcing them to suppress their natural fluctuations and complexities in the name of productivity will always lead to revolution, crisis, or collapse. In the case of forests, you get Waldsterben. For human beings, you may get suicide. You may get the collapse of a corporation or an entire manufacturing sector.

  Foxconn’s approach to management is quite simple: make each human do a very specialized repetitive task so that no actual thought or skill is required. This type of specialized labor works in ant colonies because individual ants are relatively simple creatures and are by genetic design already specialized to do certain tasks without thinking.

  Human beings are actually terrible at specialization. This is why every attempt to turn human beings into worker insects for the benefit of rich people results in massive human misery. Terry Gou, the CEO of Foxconn, admits as much in one of his sayings that people who wish to get promoted must memorize: “Suffering is the identical twin of growth.”

  In a remarkable study by Pun Ngai and Jenny Chan about the rash of recent suicides at the Apple supplier, they describe the fate of seventeen-year-old worker Tian Wu who on March 17, 2010 jumped from the fourth floor of her worker dormitory.5 Tian had just moved to Longchua to work at the Foxconn factory from rural Hubai. Prior to what she called “her accident” she was described as a carefree girl who loved flowers.

  After working at the Foxconn Longhua campus for thirty-seven days she attempted suicide. Unlike fourteen of her co-workers who also attempted suicide during a two-month span in 2010 and 2011, Tian survived. She will likely be confined to a wheelchair for the rest of her life.

  Foxconn maintains a round-the-clock production schedule and often imposes overtime on the workers. They live in dormitories that have armed security guards at the doors. They live in such close quarters that personal privacy is next to nonexistent. Workers are randomly assigned to dorm rooms, a process which breaks up existing social networks and keeps worker organization to a minimum. They are not allowed visitors overnight. The entire life of a Foxconn worker is devoted to the production of cheap electronics, mostly for Western consumption.

  Recently, pressure has been mounting on Apple and other technology companies to examine their relationships to their Chinese suppliers like Foxconn. However, I would argue that it is the fundamental nature of the work that drives people to suicide. Working at Foxconn is the logical extreme of time management. Management schedules washing, eating, and sleeping to coincide with production timelines and in order to maximize the efficiency of shift rotation.

  In the West, we are proud of our new economy based on mobility and of our information revolution. We seem to regard industrial production as a quaint relic of the mid-20th century, as if we’re somehow now free of the ugliness and unhipness of manufacturing. We all live in the cloud now. In fact, Foxconn is the largest private employer in all China. It employs upwards of 1.4 million people, and one of the factory compounds employs four hundred thousand people. That’s four hundred thousand people—roughly the population of Minneapolis—working at one factory.

  The Fair Labor Association recently investigated Foxconn and concluded, “The factories were working beyond legal and code limits on hours of work, not recording and paying unscheduled overtime correctly, allowing interns to work overtime against Chinese regulations and during peak periods workers worked more than seven days in a row without a rest day. In addition the investigation recorded many health and safety issues and found that although there is a trade union with a collective bargaining agreement it does not measure up to international or national standards.”

  One Foxconn worker comments, “We get yelled at all the time. It’s very tough around here. We’re trapped in a ‘concentration camp’ of labor discipline—Foxconn manages us through the principle of ‘obedience, obedience, and absolute obedience!’ Must we sacrifice our dignity as people for production efficiency?” In this inhumane environment, Ngai’s study found small acts of resistance among the workers such as stealing products, slow-downs, stoppages, small-scale strikes, and sometimes even sabotage, which really delays production.

  Then there are of course the suicides, the final option for workers to exert control over their lives. The system—in this case, the worker’s brain—tries to inject variation into its life—the stealing and sabotage—to find a more stable space in which the intrinsic dynamics of the system are in balance with the environment.

  Complex systems exist very close to the edge between order and disorder—this is called “self-organized criticality,” and it allows these systems to adapt to new environments. At this edge of chaos, systems rapidly change their internal structures until they find a stable state. There are limits to this adaptability however, and they are nonlinear. They can reach a threshold beyond which the system completely and catastrophically falls apart. A striking example of this is how glaciers melt. They can withstand a certain amount of warming, but when the melting has reached a certain threshold (the popular term for this is “tipping point”) the glacier will start to disappear even if the temperature drops again.

  Sand piles are often used to illustrate how self-organized systems stay on the edge of order and disorder, and to illustrate the concept of a nonlinear threshold. Imagine a completely flat surface on which you pour grains of sand at some constant rate. The grains of sand fall randomly to either side of the pile as it builds up. At first, the pile is small and so the angle of its slope is very shallow. You can keep add
ing sand and the pile will just get taller.

  At a certain point, the angle of the pile will become steep enough so that adding more sand causes small avalanches. Eventually, the angle of the pile and the frequency of the avalanches will converge to form a balance so that the overall shape of the pile is maintained. However, the key to this is that there is an open dissipation of sand running off the pile to compensate for the new sand being poured on to the pile. If you keep adding sand, the pile angle will become so steep that when you add just one more grain of sand, it will cause a catastrophic avalanche that flattens the whole pile.

  Working nonstop has become a new badge of honor among the professional digital class. We walk around with our gadgets trying to define our value propositions. The compulsion that businesses have to organize our lives with apps and calendars comes from deep ignorance of how the brain actually functions. We refuse to recognize that our brains are already a miracle of complex organization.

  Albert Einstein, in a much-overlooked 1949 essay called “Why Socialism?”, wrote, “If we ask ourselves how the structure of society and the cultural attitude of man should be changed in order to make human life as satisfying as possible, we should constantly be conscious of the fact that there are certain conditions which we are unable to modify. As mentioned before, the biological nature of man is, for all practical purposes, not subject to change.”

  While our understanding of “the biological nature of man” is constantly being updated, Einstein was correct in realizing that our brains have limits. Though our lives are easier, we exist on the same spectrum as a Chinese laborer. The price of achievement is the same price. Increasingly, information companies are trying to have “flat” organizations. However, the less explicit the hierarchy is at a job, the more responsibility each worker is typically expected to take. The line between life and work is blurred as the endless list of tasks becomes distributed to everyone.

  Your mobile devices ensure you are available 24/7 to handle work-related requests. There is no longer any physical place in which you are not able to work. Your mind can never truly rest. A modern information worker may actually never feel she is not working. From the point of view of capitalist investors, inducing this fear of losing an endless competition is more effective than employing bosses to intimidate workers. This compulsion to work is a form of externally imposed order and it can be a schedule, a to-do list, a business process, inane projects, and time management activities, or directives from a customer who wanted results six months ago.

  At the other end of the spectrum, we find workers like Tian Wu at the Foxconn factories in China. They pay the price of our digital mobility, sometimes with their lives. Anarchist Mikhail Bakunin wrote, “The freedom of all is essential to my freedom.” What he meant was that if some of us are enslaved, none of us are truly free.

  In Wealth of Nations, Adam Smith writes, “Great labour, either of mind or body, continued for several days together, is in most men naturally followed by a great desire of relaxation, which, if not restrained by force or by some strong necessity, is almost irresistible. It is the call of nature, which requires to be relieved by some indulgence, sometimes of ease only, but sometimes too of dissipation and diversion. If it is not complied with, the consequences are often dangerous, and sometimes fatal, and such as almost always, sooner or later, bring on the peculiar infirmity of the trade. If masters would listen to the dictates of reason and humanity, they have frequently occasion rather to moderate, than to animate the application of many of their workmen.”

  We must ask why, and for whom, are we doing all this work? Recall that your brain has hundred billion neurons, each connected by two hundred trillion synapses. Its activity is regulated by a spectacular orchestra of electrical activity that synchronizes and desynchronizes neurons and brain regions to produce the complex harmony that allows us to be human beings.

  An underlying assumption of productivity and time management is that the natural way human beings work must be suppressed for the sake of organization and productivity. For instance, time management expert David Allen’s productivity strategy is to remove non-essential thoughts from your brain. He admonishes us to get whatever we’re stressing about out of our brains and into some type of preferably automated to-do list manager: such as one of the countless productivity apps on your iPhone. Errands, emails to write, bills to pay, accounts to manage, inventories to check, strategic marketing plans to syntheoptimergize, whatever occurs to you during the course of your hectic day. When you have a physical record of these tasks, they don’t have to occupy memory space in your brain, you are less likely to forget them, and you don’t have to worry about them.

  Nowhere in Allen’s imperative to “become a wizard of productivity” does he suggest that if you must rely on perpetual mnemonic and digital gymnastics to get through your day, maybe you have too much to do. As I’ve pointed out, the human brain has limits. A modern scientific understanding of our brains shows that each of us has a unique order and structure, which we must learn to understand as much through idleness as activity.

  This uniqueness is also what unites us. Recognizing what is universal in humans—self-organization, complexity, and nonlinearity—should liberate and relax us. Self-organizing dynamics are fundamental to how our brains process information. Our nervous system is also a nonlinear dynamic system coupled to our brain. It is our heart’s ability to flexibly respond to changes in activity that prevents stroke or heart attack. Reduced heart rate variability is a very good predictor of poor cardiac health.

  And it turns out that parts of the brain’s default mode network are tightly coupled to regulating variable cardiac rhythms. The anterior cingulate cortex, among other regions, plays an important role in regulating the stress that gets transferred to our heart. Idleness lets the ACC and our nervous system find stable and variable dynamics. Stress reduces the variability in our heart rate: a low level of anxiety forces the heart to be in a state of preparedness, which it cannot maintain indefinitely.

  An extreme example of disorder in this system is post-traumatic stress disorder (PTSD). People with PTSD feel like they are constantly on vigil; they can never relax for fear of something violent happening to them again. Therefore, their hearts are constantly on alert, which reduces the variability in its rhythm. Constant overwork can be thought of as a mild form of PTSD.

  As Einstein indicated, we should each have the freedom to allow our own order and structure to emerge naturally and spend our days as we wish. Everyone hates working for other people. And being insanely busy all the time is not only bad for you; it also prevents you from discovering the human being you were meant to be.

  7

  THE SIGNAL IS THE NOISE

  “As he walked up and down … he suddenly stopped dead—for he seemed to hear a voice call through the roar of the wind.”

  —Donald Prater, A Ringing Glass: the Life of Rainer Maria Rilke

  In 1912, Rilke was staying at an Italian castle called Duino, owned by a Czech princess. Before coming to Duino, Rilke had been struggling for quite some time. He was still trying to learn how to listen to his unconscious for what he called his life’s next “turn.”

  Rilke spent hours every day at the castle walking near the two-hundred-foot cliffs which overlooked the rough sea. It had been several years since he had written any significant poems. One morning, he received an irritating and tedious business letter. Annoyed, he decided to take his walk on the path between two giant concrete battlements of the castle, near the sheer drop to the sea. A strong Adriatic wind was blowing, called a bora in Italian.

  As Donald Prater describes, Rilke heard a voice call through the roar of the wind. What the voice said to him became one of the poet’s most famous lines: Wer, wenn ich schriee, hörte mich denn aus der Engel Ordnungen?

  And if I cried out, who would hear me up there among the angelic orders?

  Did Rilke hear the wind “speak” that day at the coastal castle? I suggest that the mechanism o
f “stochastic resonance” helped Rilke suddenly enter a state of heightened awareness.

  Stochastic resonance describes any phenomenon where the presence of noise, either internally or externally, in a nonlinear system makes the system respond better than it would without noise. In nonlinear dynamical systems—like the brain—noise can make the system behave in a more orderly fashion. It can also boost weak internal or external signals so that our sensory organs and even our conscious awareness can detect them. Noise and stochastic resonance are essential to consciousness.

  When Rilke stepped out onto to the path at the castle that morning, and into the roar of the wind, perhaps the noise amplified a weak signal from deep within Rilke’s mind: If I cried out, who would hear me?

  Rilke wrote this line down in a small notebook that he always had with him. He went back to his room, and by evening, the entire first elegy had been composed. He wrote furiously, trying to capture the torrent of words that were now flooding from his consciousness. It was as if the dam inside his brain had burst.

  We almost always think of noise as bad. It is a form of interference. It is a nuisance. Too much of it over time can cause hearing loss. Electrical engineers have been struggling to get rid of noise in their systems since the invention of the telephone and computer. Jet engine manufacturers face severe restrictions nowadays on how loud their engines can be near airports. Commercial jetliners are about fifty percent quieter today than they were just twenty years ago.

  Nate Silver, in his great book The Signal and the Noise, says of noise, “The signal is the truth. The noise is what distracts us from the truth.” While Silver’s characterization of the signal and the noise reflects our common sense intuition about noise, there are many circumstances in which the addition of the right amount of noise actually boosts the signal.

 

‹ Prev