Stephen Hawking

Home > Other > Stephen Hawking > Page 13
Stephen Hawking Page 13

by A Brief History Of Time (lit)


  The laws of science, as we know them at present, contain many fundamental numbers, like the size of the electric charge of the electron and the ratio of the masses of the proton and the electron. We cannot, at the moment at least, predict the values of these numbers from theory – we have to find them by observation. It may be that one day we shall discover a complete unified theory that predicts them all, but it is also possible that some or all of them vary from universe to universe or within a single universe. The remarkable fact is that the values of these numbers seem to have been very finely adjusted to make possible the development of life. For example, if the electric charge of the electron had been only slightly different, stars either would have been unable to burn hydrogen and helium, or else they would not have exploded. Of course, there might be other forms of intelligent life, not dreamed of even by writers of science fiction, that did not require the light of a star like the sun or the heavier chemical elements that are made in stars and are flung back into space when the stars explode. Nevertheless, it seems clear that there are relatively few ranges of values for the numbers that would allow the development of any form of intelligent life. Most sets of values would give rise to universes that, although they might be very beautiful, would contain no one able to wonder at that beauty. One can take this either as evidence of a divine purpose in Creation and the choice of the laws of science or as support for the strong anthropic principle.

  There are a number of objections that one can raise to the strong anthropic principle as an explanation of the observed state of the universe. First, in what sense can all these different universes be said to exist? If they are really separate from each other, what happens in another universe can have no observable consequences in our own universe. We should therefore use the principle of economy and cut them out of the theory. If, on the other hand, they are just different regions of a single universe, the laws of science would have to be the same in each region, because otherwise one could not move continuously from one region to another. In this case the only difference between the regions would be their initial configurations and so the strong anthropic principle would reduce to the weak one.

  A second objection to the strong anthropic principle is that it runs against the tide of the whole history of science. We have developed from the geocentric cosmologies of Ptolemy and his forebears, through the heliocentric cosmology of Copernicus and Galileo, to the modern picture in which the earth is a medium-sized planet orbiting around an average star in the outer suburbs of an ordinary spiral galaxy, which is itself only one of about a million million galaxies in the observable universe. Yet the strong anthropic principle would claim that this whole vast construction exists simply for our sake. This is very hard to believe. Our Solar System is certainly a prerequisite for our existence, hand one might extend this to the whole of our galaxy to allow for an earlier generation of stars that created the heavier elements. But there does not seem to be any need for all those other galaxies, nor for the universe to be so uniform and similar in every direction on the large scale.

  One would feel happier about the anthropic principle, at least in its weak version, if one could show that quite a number of different initial configurations for the universe would have evolved to produce a universe like the one we observe. If this is the case, a universe that developed from some sort of random initial conditions should contain a number of regions that are smooth and uniform and are suitable for the evolution of intelligent life. On the other hand, if the initial state of the universe had to be chosen extremely carefully to lead to something like what we see around us, the universe would be unlikely to contain any region in which life would appear. In the hot big bang model described above, there was not enough time in the early universe for heat to have flowed from one region to another. This means that the initial state of the universe would have to have had exactly the same temperature everywhere in order to account for the fact that the microwave back-ground has the same temperature in every direction we look. The initial rate of expansion also would have had to be chosen very precisely for the rate of expansion still to be so close to the critical rate needed to avoid recollapse. This means that the initial state of the universe must have been very carefully chosen indeed if the hot big bang model was correct right back to the beginning of time. It would be very difficult to explain why the universe should have begun in just this way, except as the act of a God who intended to create beings like us.

  In an attempt to find a model of the universe in which many different initial configurations could have evolved to something like the present universe, a scientist at the Massachusetts Institute of Technology, Alan Guth, suggested that the early universe might have gone through a period of very rapid expansion. This expansion is said to be “inflationary,” meaning that the universe at one time expanded at an increasing rate rather than the decreasing rate that it does today. According to Guth, the radius of the universe increased by a million million million million million (1 with thirty zeros after it) times in only a tiny fraction of a second.

  Guth suggested that the universe started out from the big bang in a very hot, but rather chaotic, state. These high temperatures would have meant that the particles in the universe would be moving very fast and would have high energies. As we discussed earlier, one would expect that at such high temperatures the strong and weak nuclear forces and the electromagnetic force would all be unified into a single force. As the universe expanded, it would cool, and particle energies would go down. Eventually there would be what is called a phase transition and the symmetry between the forces would be broken: the strong force would become different from the weak and electromagnetic forces. One common example of a phase transition is the freezing of water when you cool it down. Liquid water is symmetrical, the same at every point and in every direction. However, when ice crystals form, they will have definite positions and will be lined up in some direction. This breaks water’s symmetry.

  In the case of water, if one is careful, one can “supercool” it: that is, one can reduce the temperature below the freezing point (OºC) without ice forming. Guth suggested that the universe might behave in a similar way: the temperature might drop below the critical value without the symmetry between the forces being broken. If this happened, the universe would be in an unstable state, with more energy than if the symmetry had been broken. This special extra energy can be shown to have an antigravitational effect: it would have acted just like the cosmological constant that Einstein introduced into general relativity when he was trying to construct a static model of the universe. Since the universe would already be expanding just as in the hot big bang model, the repulsive effect of this cosmological constant would therefore have made the universe expand at an ever-increasing rate. Even in regions where there were more matter particles than average, the gravitational attraction of the matter would have been outweighed by the repulsion of the effective cosmological constant. Thus these regions would also expand in an accelerating inflationary manner. As they expanded and the matter particles got farther apart, one would be left with an expanding universe that contained hardly any particles and was still in the supercooled state. Any irregularities in the universe would simply have been smoothed out by the expansion, as the wrinkles in a balloon are smoothed away when you blow it up. Thus the present smooth and uniform state of the universe could have evolved from many different non-uniform initial states.

  In such a universe, in which the expansion was accelerated by a cosmological constant rather than slowed down by the gravitational attraction of matter, there would be enough time for light to travel from one region to another in the early universe. This could provide a solution to the problem, raised earlier, of why different regions in the early universe have the same properties. Moreover, the rate of expansion of the universe would automatically become very close to the critical rate determined by the energy density of the universe. This could then explain why the rate of expansion is still so close to the critical ra
te, without having to assume that the initial rate of expansion of the universe was very carefully chosen.

  The idea of inflation could also explain why there is so much matter in the universe. There are something like ten million million million million million million million million million million million million million million (1 with eighty zeros after it) particles in the region of the universe that we can observe. Where did they all come from? The answer is that, in quantum theory, particles can be created out of energy in the form of particle/antiparticle pairs. But that just raises the question of where the energy came from. The answer is that the total energy of the universe is exactly zero. The matter in the universe is made out of positive energy. However, the matter is all attracting itself by gravity. Two pieces of matter that are close to each other have less energy than the same two pieces a long way apart, because you have to expend energy to separate them against the gravitational force that is pulling them together. Thus, in a sense, the gravitational field has negative energy. In the case of a universe that is approximately uniform in space, one can show that this negative gravitational energy exactly cancels the positive energy represented by the matter. So the total energy of the universe is zero.

  Now twice zero is also zero. Thus the universe can double the amount of positive matter energy and also double the negative gravitational energy without violation of the conservation of energy. This does not happen in the normal expansion of the universe in which the matter energy density goes down as the universe gets bigger. It does happen, however, in the inflationary expansion because the energy density of the supercooled state remains constant while the universe expands: when the universe doubles in size, the positive matter energy and the negative gravitational energy both double, so the total energy remains zero. During the inflationary phase, the universe increases its size by a very large amount. Thus the total amount of energy available to make particles becomes very large. As Guth has remarked, “It is said that there’s no such thing as a free lunch. But the universe is the ultimate free lunch.”

  The universe is not expanding in an inflationary way today. Thus there has to be some mechanism that would eliminate the very large effective cosmological constant and so change the rate of expansion from an accelerated one to one that is slowed down by gravity, as we have today. In the inflationary expansion one might expect that eventually the symmetry between the forces would be broken, just as super-cooled water always freezes in the end. The extra energy of the unbroken symmetry state would then be released and would reheat the universe to a temperature just below the critical temperature for symmetry between the forces. The universe would then go on to expand and cool just like the hot big bang model, but there would now be an explanation of why the universe was expanding at exactly the critical rate and why different regions had the same temperature.

  In Guth’s original proposal the phase transition was supposed to occur suddenly, rather like the appearance of ice crystals in very cold water. The idea was that “bubbles” of the new phase of broken symmetry would have formed in the old phase, like bubbles of steam surrounded by boiling water. The bubbles were supposed to expand and meet up with each other until the whole universe was in the new phase. The trouble was, as I and several other people pointed out, that the universe was expanding so fast that even if the bubbles grew at the speed of light, they would be moving away from each other and so could not join up. The universe would be left in a very non-uniform state, with some regions still having symmetry between the different forces. Such a model of the universe would not correspond to what we see.

  In October 1981, I went to Moscow for a conference on quantum gravity. After the conference I gave a seminar on the inflationary model and its problems at the Sternberg Astronomical Institute. Before this, I had got someone else to give my lectures for me, because most people could not understand my voice. But there was not time to prepare this seminar, so I gave it myself, with one of my graduate students repeating my words. It worked well, and gave me much more contact with my audience. In the audience was a young Russian, Andrei Linde, from the Lebedev Institute in Moscow. He said that the difficulty with the bubbles not joining up could be avoided if the bubbles were so big that our region of the universe is all contained inside a single bubble. In order for this to work, the change from symmetry to broken symmetry must have taken place very slowly inside the bubble, but this is quite possible according to grand unified theories. Linde’s idea of a slow breaking of symmetry was very good, but I later realized that his bubbles would have to have been bigger than the size of the universe at the time! I showed that instead the symmetry would have broken everywhere at the same time, rather than just inside bubbles. This would lead to a uniform universe, as we observe. I was very excited by this idea and discussed it with one of my students, Ian Moss. As a friend of Linde’s, I was rather embarrassed, however, when I was later sent his paper by a scientific journal and asked whether it was suitable for publication. I replied that there was this flaw about the bubbles being bigger than the universe, but that the basic idea of a slow breaking of symmetry was very good. I recommended that the paper ¿ published as it was because it would take Linde several months to correct it, since anything he sent to the West would have to be passed by Soviet censorship, which was neither very skillful nor very quick with scientific papers. Instead, I wrote a short paper with Ian Moss in the same journal in which we pointed out this problem with the bubble and showed how it could be resolved.

  The day after I got back from Moscow I set out for Philadelphia, where I was due to receive a medal from the Franklin Institute. My secretary, Judy Fella, had used her not inconsiderable charm to persuade British Airways to give herself and me free seats on a Concorde as a publicity venture. However, I .was held up on my way to the airport by heavy rain and I missed the plane. Nevertheless, I got to Philadelphia in the end and received my medal. I was then asked to give a seminar on the inflationary universe at Drexel University in Philadelphia. I gave the same seminar about the problems of the inflationary universe, just as in Moscow.

  A very similar idea to Linde’s was put forth independently a few months later by Paul Steinhardt and Andreas Albrecht of the University of Pennsylvania. They are now given joint credit with Linde for what is called “the new inflationary model,” based on the idea of a slow breaking of symmetry. (The old inflationary model was Guth’s original suggestion of fast symmetry breaking with the formation of bubbles.)

  The new inflationary model was a good attempt to explain why the universe is the way it is. However, I and several other people showed that, at least in its original form, it predicted much greater variations in the temperature of the microwave background radiation than are observed. Later work has also cast doubt on whether there could be a phase transition in the very early universe of the kind required. In my personal opinion, the new inflationary model is now dead as a scientific theory, although a lot of people do not seem to have heard of its demise and are still writing papers as if it were viable. A better model, called the chaotic inflationary model, was put forward by Linde in 1983. In this there is no phase transition or supercooling. Instead, there is a spin 0 field, which, because of quantum fluctuations, would have large values in some regions of the early universe. The energy of the field in those regions would behave like a cosmological constant. It would have a repulsive gravitational effect, and thus make those regions expand in an inflationary manner. As they expanded, the energy of the field in them would slowly decrease until the inflationary expansion changed to an expansion like that in the hot big bang model. One of these regions would become what we now see as the observable universe. This model has all the advantages of the earlier inflationary models, but it does not depend on a dubious phase transition, and it can moreover give a reasonable size for the fluctuations in the temperature of the microwave background that agrees with observation.

  This work on inflationary models showed that the present state of the universe could have ari
sen from quite a large number of different initial configurations. This is important, because it shows that the initial state of the part of the universe that we inhabit did not have to be chosen with great care. So we may, if we wish, use the weak anthropic principle to explain why the universe looks the way it does now. It cannot be the case, however, that every initial configuration would have led to a universe like the one we observe. One can show this by considering a very different state for the universe at the present time, say, a very lumpy and irregular one. One could use the laws of science to evolve the universe back in time to determine its configuration at earlier times. According to the singularity theorems of classical general relativity, there would still have been a big bang singularity. If you evolve such a universe forward in time according to the laws of science, you will end up with the lumpy and irregular state you started with. Thus there must have been initial configurations that would not have given rise to a universe like the one we see today. So even the inflationary model does not tell us why the initial configuration was not such as to produce something very different from what we observe. Must we turn to the anthropic principle for an explanation? Was it all just a lucky chance? That would seem a counsel of despair, a negation of all our hopes of understanding the underlying order of the universe.

  In order to predict how the universe should have started off, one needs laws that hold at the beginning of time. If the classical theory of general relativity was correct, the singularity theorems that Roger Penrose and I proved show that the beginning of time would have been a point of infinite density and infinite curvature of space-time. All the known laws of science would break down at such a point. One might suppose that there were new laws that held at singularities, but it would be very difficult even to formulate such laws at such badly behaved points, and we would have no guide from observations as to what those laws might be. However, what the singularity theorems really indicate is that the gravitational field becomes so strong that quantum gravitational effects become important: classical theory is no longer a good description of the universe. So one has to use a quantum theory of gravity to discuss the very early stages of the universe. As we shall see, it is possible in the quantum theory for the ordinary laws of science to hold everywhere, including at the beginning of time: it is not necessary to postulate new laws for singularities, because there need not be any singularities in the quantum theory.

 

‹ Prev