10 a18
11 Anaxagoras.
12 The promise is not fulfilled.
13 Phys. ii. 3, 7.
14 Cf. Pl. Phaedo, 98 BC, Laws, 967 B–D.
15 De Caelo, ii. 13.
16 Phys. i. 3.
17 i. e. 2 will be each of several things whose definition is predicable of it.
18 e. g. 2 was identified both with opinion and with daring.
19 Cf. 984b 15–19, 32–b 10.
20 Phys. ii. 3, 7.
21 De Caelo, iii. 7.
22 With 990b 2–991a 8 Cf. xiii. 1078b 34–1079b 3.
23 100 C–E.
24 With 991a 8–b 9 Cf. xiii. 1079b 12–1080a 8.
25 With 992a 10–19 Cf. xiii. 1085a 9–19.
26 991a 20–22.
27 sc. the final cause.
28 Cf. Plato, Rep. vii. 531 D, 533 B–E.
29 For this Platonic method Cf. vii. 1031b 21, xiii. 1086b 9, xiv. 1090a 17.
30 ii. 3, 7.
31 The reference is to Bk. iii.
BOOK α (II)
1 The investigation of the truth is in one way hard, (30) in another easy. An indication of this is found in the fact that no one is able to attain the truth adequately, while, on the other hand, we do not collectively fail, but every one says something true about the nature of things, and while individually we contribute little or nothing to the truth, by the union of all a considerable amount is amassed. [993b] Therefore, since the truth seems to be like the proverbial door, which no one can fail to hit, (5) in this respect it must be easy, but the fact that we can have a whole truth and not the particular part we aim at shows the difficulty of it.
Perhaps, too, as difficulties are of two kinds, the cause of the present difficulty is not in the facts but in us. For as the eyes of bats are to the blaze of day, (10) so is the reason in our soul to the things which are by nature most evident of all.
It is just that we should be grateful, not only to those with whose views we may agree, but also to those who have expressed more superficial views; for these also contributed something, (15) by developing before us the powers of thought. It is true that if there had been no Timotheus we should have been without much of our lyric poetry; but if there had been no Phrynis there would have been no Timotheus. The same holds good of those who have expressed views about the truth; for from some thinkers we have inherited certain opinions, while the others have been responsible for the appearance of the former.
It is right also that philosophy should be called knowledge of the truth. (20) For the end of theoretical knowledge is truth, while that of practical knowledge is action (for even if they consider how things are, practical men do not study the eternal, but what is relative and in the present). Now we do not know a truth without its cause; and a thing has a quality in a higher degree than other things if in virtue of it the similar quality belongs to the other things as well (e. g. fire is the hottest of things; for it is the cause of the heat of all other things); so that that which causes derivative truths to be true is most true. (25) Hence the principles of eternal things must be always most true (for they are not merely sometimes true, nor is there any cause of their being, but they themselves are the cause of the being of other things), so that as each thing is in respect of being, so is it in respect of truth. (30)
2 [994a] But evidently there is a first principle, and the causes of things are neither an infinite series nor infinitely various in kind. For (1) neither can one thing proceed from another, as from matter, ad infinitum (e. g. flesh from earth, earth from air, air from fire, (5) and so on without stopping), nor can the sources of movement form an endless series (man for instance being acted on by air, air by the sun, the sun by Strife,1 and so on without limit). Similarly the final causes cannot go on ad infinitum—walking being for the sake of health, this for the sake of happiness, happiness for the sake of something else, and so one thing always for the sake of another. And the case of the essence is similar. (10) For in the case of intermediates, which have a last term and a term prior to them, the prior must be the cause of the later terms. For if we had to say which of the three is the cause, we should say the first; surely not the last, for the final term is the cause of none; nor even the intermediate, for it is the cause only of one. (15) (It makes no difference whether there is one intermediate or more, nor whether they are infinite or finite in number.) But of series which are infinite in this way, and of the infinite in general, all the parts down to that now present are alike intermediates; so that if there is no first there is no cause at all.
Nor can there be an infinite process downwards, with a beginning in the upward direction, so that water should proceed from fire, (20) earth from water, and so always some other kind should be produced. For one thing comes from another in two ways—not in the sense in which ‘from’ means ‘after’ (as we say ‘from the Isthmian games come the Olympian’), but either (i) as the man comes from the boy, by the boy’s changing, or (ii) as air comes from water. By ‘as the man comes from the boy’ we mean ‘as that which has come to be from that which is coming to be, (25) or as that which is finished from that which is being achieved’ (for as becoming is between being and not being, so that which is becoming is always between that which is and that which is not; for the learner is a man of science in the making, and this is what is meant when we say that from a learner a man of science is being made); on the other hand, (30) coming from another thing as water comes from air implies the destruction of the other thing. This is why changes of the former kind are not reversible, and the boy does not come from the man (for it is not that which comes to be something that comes to be as a result of coming to be, but that which exists after the coming to be; for it is thus that the day, too, comes from the morning—in the sense that it comes after the morning; which is the reason why the morning cannot come from the day); but changes of the other kind are reversible. [994b] But in both cases it is impossible that the number of terms should be infinite. For terms of the former kind, (5) being intermediates, must have an end, and terms of the latter kind change back into one another; for the destruction of either is the generation of the other.
At the same time it is impossible that the first cause, being eternal, should be destroyed; for since the process of becoming is not infinite in the upward direction, that which is the first thing by whose destruction something came to be must be non-eternal.
Further, the final cause is an end, and that sort of end which is not for the sake of something else, but for whose sake everything else is; so that if there is to be a last term of this sort, (10) the process will not be infinite; but if there is no such term, there will be no final cause, but those who maintain the infinite series eliminate the Good without knowing it (yet no one would try to do anything if he were not going to come to a limit); nor would there be reason in the world; the reasonable man, (15) at least, always acts for a purpose, and this is a limit; for the end is a limit.
But the essence, also, cannot be reduced to another definition which is fuller in expression.2 For the original definition is always more of a definition, and not the later one; and in a series in which the first term has not the required character, (20) the next has not it either.—Further, those who speak thus destroy science; for it is not possible to have this till one comes to the unanalysable terms. And knowledge becomes impossible; for how can one apprehend things that are infinite in this way?3 For this is not like the case of the line, to whose divisibility there is no stop, but which we cannot think if we do not make a stop, (for which reason one who is tracing the infinitely divisible line cannot be counting the possibilities of section), (25) but the whole line also must be apprehended by something in us that does not move from part to part.—Again, nothing infinite can exist; and if it could, at least the notion of infinity is not infinite.4
But (2) if the kinds of causes had been infinite in number, then also knowledge would have been impossible; for we think we know, only when we have ascertained the causes, but th
at which is infinite by addition cannot be gone through in a finite time. (30)
3 The effect which lectures produce on a hearer depends on his habits; for we demand the language we are accustomed to, and that which is different from this seems not in keeping but somewhat unintelligible and foreign because of its unwontedness. [995a] For it is the customary that is intelligible. The force of habit is shown by the laws, in which the legendary and childish elements prevail over our knowledge about them, (5) owing to habit. Thus some people do not listen to a speaker unless he speaks mathematically, others unless he gives instances, while others expect him to cite a poet as witness. And some want to have everything done accurately, while others are annoyed by accuracy, either because they cannot follow the connexion of thought or because they regard it as pettifoggery. (10) For accuracy has something of this character, so that as in trade so in argument some people think it mean. Hence one must be already trained to know how to take each sort of argument, since it is absurd to seek at the same time knowledge and the way of attaining knowledge; and it is not easy to get even one of the two.
The minute accuracy of mathematics is not to be demanded in all cases, (15) but only in the case of things which have no matter. Hence its method is not that of natural science; for presumably the whole of nature has matter. Hence we must inquire first what nature is: for thus we shall also see what natural science treats of [and whether it belongs to one science or to more to investigate the causes and the principles of things]. (20)
* * *
1 The illustration is taken from the cosmology of Empedocles.
2 i. e. one can reduce the definition of man as ‘rational animal’ to ‘rational sensitive living substance’, but one cannot carry on this process ad infinitum.
3 i. e. actually infinite.
4 i. e. does not contain an infinite number of marks.
BOOK B (II)
1 We must, with a view to the science which we are seeking, first recount the subjects that should be first discussed. These include both the other opinions that some have held on the first principles, (25) and any point besides these that happens to have been overlooked. For those who wish to get clear of difficulties it is advantageous to discuss the difficulties well; for the subsequent free play of thought implies the solution of the previous difficulties, and it is not possible to untie a knot of which one does not know. (30) But the difficulty of our thinking points to a ‘knot’ in the object; for in so far as our thought is in difficulties, it is in like case with those who are bound; for in either case it is impossible to go forward. Hence one should have surveyed all the difficulties beforehand, both for the purposes we have stated and because people who inquire without first stating the difficulties are like those who do not know where they have to go; besides, (35) a man does not otherwise know even whether he has at any given time found what he is looking for or not; for the end is not clear to such a man, while to him who has first discussed the difficulties it is clear. [995b] Further, he who has heard all the contending arguments, as if they were the parties to a case, must be in a better position for judging.
The first problem concerns the subject1 which we discussed in our prefatory remarks. (5) It is this—(1) whether the investigation of the causes belongs to one or to more sciences,2 and (2) whether such a science should survey only the first principles of substance, or also the principles on which all men base their proofs, e. g. whether it is possible at the same time to assert and deny one and the same thing or not, (10) and all other such questions;3 and (3) if the science in question deals with substance, whether one science deals with all substances, or more than one,4 and if more, whether all are akin, or some of them must be called forms of Wisdom and the others something else. And (4) this itself is also one of the things that must be discussed—whether sensible substances alone should be said to exist or others also besides them, (15) and whether these others are of one kind or there are several classes of substances, as is supposed by those who believe both in Form and in mathematical objects intermediate between these and sensible things.5 Into these questions, then, as we say, we must inquire, and also (5) whether our investigation is concerned only with substances or also with the essential attributes of substances.6 Further, (20) with regard to the same and other and like and unlike and contrariety, and with regard to prior and posterior and all other such terms about which the dialecticians try to inquire, starting their investigation from probable premises only—whose business is it to inquire into all these? Further, (25) we must discuss the essential attributes of these themselves; and we must ask not only what each of these is, but also whether one thing always has one contrary.7 Again (6), are the principles and elements of things the genera, or the parts present in each thing, into which it is divided;8 and (7) if they are the genera, are they the genera that are predicated proximately of the individuals, or the highest genera, e. g. is animal or man the first principle and the more independent of the individual instance?9 And (8) we must inquire and discuss especially whether there is, (30) besides the matter, any thing that is a cause in itself or not, and whether this can exist apart or not, and whether it is one or more in number, and whether there is something apart from the concrete thing (by the concrete thing I mean the matter with something already predicated of it), (35) or there is nothing apart, or there is something in some cases though not in others, and what sort of cases these are.10 Again (9) we ask whether the principles are limited in number or in kind, both those in the definitions and those in the substratum;11 and (10) whether the principles of perishable and of imperishable things are the same or different; and whether they are all imperishable or those of perishable things are perishable.12 [996a] Further (11) there is the question which is hardest of all and most perplexing, whether unity and being, (5) as the Pythagoreans and Plato said, are not attributes of something else but the substance of existing things, or this is not the case, but the substratum is something else—as Empedocles says, love; as some one else13 says, fire; while another14 says water or air.15 Again (12) we ask whether the principles are universal or like individual things,16 and (13) whether they exist potentially or actually,17 and further, (10) whether they are potential or actual in any other sense than in reference to movement;18 for these questions also would present much difficulty. Further (14), are numbers and lines and figures and points a kind of substance or not, and if they are substances are they separate from sensible things or present in them?19 With regard to all these matters not only is it hard to get possession of the truth, (15) but it is not easy even to think out the difficulties well.
2 (1) First then with regard to what we mentioned first, does it belong to one or to more sciences to investigate all the kinds of causes? How could it belong to one science to recognize the principles if these are not contrary?
Further, (20) there are many things to which not all the principles pertain. For how can a principle of change or the nature of the good exist for unchangeable things, since everything that in itself and by its own nature is good is an end, (25) and a cause in the sense that for its sake the other things both come to be and are, and since an end or purpose is the end of some action, and all actions imply change? So in the case of unchangeable things this principle could not exist, nor could there be a good-itself. This is why in mathematics nothing is proved by means of this kind of cause, (30) nor is there any demonstration of this kind—‘because it is better, or worse’; indeed no one even mentions anything of the kind. And so for this reason some of the Sophists, e. g. Aristippus, used to ridicule mathematics; for in the arts (he maintained), even in the industrial arts, e. g. in carpentry and cobbling, (35) the reason always given is ‘because it is better, or worse’, but the mathematical sciences take no account of goods and evils. [996b]
But if there are several sciences of the causes, and a different science for each different principle, which of these sciences should be said to be that which we seek, or which of the people who possess them has the most scientific kn
owledge of the object in question? The same thing may have all the kinds of causes, (5) e. g. the moving cause of a house is the art or the builder, the final cause is the function it fulfils, the matter is earth and stones, and the form is the definition. To judge from our previous discussion20 of the question which of the sciences should be called Wisdom, there is reason for applying the name to each of them. (10) For inasmuch as it is most architectonic and authoritative and the other sciences, like slave-women, may not even contradict it, the science of the end and of the good is of the nature of Wisdom (for the other things are for the sake of the end). But inasmuch as it was described21 as dealing with the first causes and that which is in the highest sense object of knowledge, the science of substance22 must be of the nature of Wisdom. (15) For since men may know the same thing in many ways, we say that he who recognizes what a thing is by its being so and so knows more fully than he who recognizes it by its not being so and so, and in the former class itself one knows more fully than another, and he knows most fully who knows what a thing is, not he who knows its quantity or quality or what it can by nature do or have done to it. And further in all other cases also we think that the knowledge of each even of the things of which demonstration is possible is present only when we know what the thing is, (20) e. g. what squaring a rectangle is, viz. that it is the finding of a mean; and similarly in all other cases. And we know about becomings and actions and about every change when we know the source of the movement; and this is other than and opposed to the end. Therefore it would seem to belong to different sciences to investigate these causes severally.23 (25)
But (2), taking the starting-points of demonstration as well as the causes, it is a disputable question whether they are the object of one science or of more (by the starting-points of demonstration I mean the common beliefs, on which all men base their proofs); e. g. that everything must be either affirmed or denied, and that a thing cannot at the same time be and not be, and all other such premisses:—the question is whether the same science deals with them as with substance, (30) or a different science, and if it is not one science, which of the two must be identified with that which we now seek.—It is not reasonable that these topics should be the object of one science; for why should it be peculiarly appropriate to geometry or to any other science to understand these matters? If then it belongs to every science alike, (35) and cannot belong to all, it is not peculiar to the science which investigates substances, any more than to any other science, to know about these topics. [997a]—And, at the same time, in what way can there be a science of the first principles? For we are aware even now what each of them in fact is (at least even other sciences use them as familiar); but if there is a demonstrative science which deals with them, (5) there will have to be an underlying kind, and some of them must be demonstrable attributes and others must be axioms (for it is impossible that there should be demonstration about all of them); for the demonstration must start from certain premisses and be about a certain subject and prove certain attributes. Therefore it follows that all attributes that are proved must belong to a single class; for all demonstrative sciences use the axioms. (10)
The Basic Works of Aristotle (Modern Library Classics) Page 99