In a country like India with a large rural population, bringing wealth to the villages means bringing jobs other than farming. Most of the villagers must cease to be subsistence farmers and become shopkeepers or schoolteachers or bankers or engineers or poets. In the end the villages must become gentrified, as they are today in England, with the old farmworkers’ cottages converted into garages, and the few remaining farmers converted into highly skilled professionals. It is fortunate that sunlight is most abundant in tropical countries, where a large fraction of the world’s people live and where rural poverty is most acute. Since sunlight is distributed more equitably than coal and oil, green technology can be a great equalizer, helping to narrow the gap between rich and poor countries.
My book The Sun, the Genome, and the Internet (1999) describes a vision of green technology enriching villages all over the world and halting the migration from villages to megacities. The three components of the vision are all essential: the sun to provide energy where it is needed, the genome to provide plants that can convert sunlight into chemical fuels cheaply and efficiently, the Internet to end the intellectual and economic isolation of rural populations. With all three components in place, every village in Africa could enjoy its fair share of the blessings of civilization. People who prefer to live in cities would still be free to move from villages to cities, but they would not be compelled to move by economic necessity.
Note added in 2014: This essay provoked a number of readers to write angry letters in response. Here is an example, published in The New York Review of September 27, 2007, together with my reply:
To the Editors:
Science is valuable and admirable for its ability to establish a certain kind of truth beyond a reasonable doubt, for its precise methodologies and its respect for evidence. And so it is disconcerting to see an eminent scientist such as Freeman Dyson using his own prestige and that of science as a pulpit from which to foretell the advent of yet another technological cure-all.
In his essay “Our Biotech Future,” Mr. Dyson sees high technology as “marching from triumph to triumph with the advent of personal computers and GPS receivers and digital cameras,” and he foretells the coming of a “domesticated” biotechnology that will become the plaything and art form of “housewives and children,” that “will give us an explosion of diversity of new living creatures, rather than the monoculture crops that the big corporations prefer,” and will solve “the problem of rural poverty.”
This of course is only another item in a long wish list of techno-scientific panaceas that includes the “labor-saving” industrialization of virtually everything, eugenics (the ghost and possibility that haunts genetic engineering), chemistry (for “better living”), the “peaceful atom,” the Green Revolution, television, the space program, and computers. All those have been boosted, by prophets like Mr. Dyson, as benefits essentially without costs, assets without debits, in spite of their drawdown of necessary material and cultural resources. Such prophecies are in fact only sales talk—and sales talk, moreover, by sellers under no pressure to guarantee their products.
Mr. Dyson has the candor to admit that biotechnological games for children may be dangerous: “The dangers of biotechnology are real and serious.” And he lists a number of questions—serious ones, sure enough—that “need to be answered.” But perhaps the most irresponsible thing in his essay is his willingness to shirk his own questions: “I do not attempt to answer these questions here. I leave it to our children and grandchildren to supply the answers.” This is fully in keeping with our bequest to our children of huge accumulations of nuclear and chemical poisons. And isn’t it rather shockingly unscientific? If there is anything at all to genetics, how can we assume that our children and grandchildren will be smart enough to answer questions that we are too dull or lazy to answer? And after our long experience of problems caused by industrial solutions, might not a little skepticism be in order? Might not, in fact, some actual cost accounting be in order?
As for rural poverty, Mr. Dyson’s thinking is all too familiar to any rural American: “What the world needs is a technology that directly attacks the problem of rural poverty by creating wealth and jobs in the villages.” This is called “bringing in industry,” a practice dear to state politicians. To bring in industry, the state offers “economic incentives” (or “corporate welfare”) and cheap labor to presumed benefactors, who often leave very soon for greater incentives and cheaper labor elsewhere.
Industrial technology, as brought-in industry and as applied by agribusiness, has been the cleverest means so far of siphoning the wealth of the countryside—not to the cities, as Mr. Dyson appears to think, for urban poverty is inextricably related to rural poverty, but to the corporations. Industries that are “brought in” convey the local wealth out; otherwise they would not come. And what makes it likely that “green technology” would be an exception? How can Mr. Dyson suppose that the rural poor will control the power of biotechnology so as to use it for their own advantage? Has he not heard of the patenting of varieties and genes? Has he not heard of the infamous lawsuit of Monsanto against the Canadian farmer Percy Schmeiser? I suppose that if, as Mr. Dyson predicts, biotechnology becomes available—cheaply, I guess—even to children, then it would be available to poor country people. But what would be the economic advantage of this? How, in short, would this work to relieve poverty? Mr. Dyson does not say.
His only example of a beneficent rural biotechnology is the cloning of Dolly the sheep. But he does not say how this feat has benefited sheep production, let alone the rural poor.
Wendell Berry
Port Royal, Kentucky
I replied:
My thanks to Wendell Berry for his illuminating comments. As usual, I learn more from critics than from flatterers. I value Berry’s criticism especially because it comes from Kentucky, a state that I know only superficially from a visit to Center College in Danville, where I was a guest of the local chapter of Phi Beta Kappa students. In Danville I saw three things that agree with my vision of the future: a world-class performance of the Verdi Requiem by a local choir, a bookstore where the owners know and love what they are selling, and a roomful of bright students arguing about science and technology in the midst of a rural society.
I am aware that Danville is not all of Kentucky, and that large parts of Kentucky do not enjoy the blessings of gentrification. But I still see Danville as a good model for the future of rural society, when people are liberated from the burdens of subsistence farming. I am not foretelling any “technological cure-all.” I am only saying that science will soon give us a new set of tools, which may bring wealth and freedom to the countryside when they become cheap and widely available. Whether we greet these new tools with enthusiasm or with abhorrence is a matter of taste. It would be unjust and unwise for those who dislike the new tools today to impose their tastes on our grandchildren tomorrow.
*See Carl Woese, “A New Biology for a New Century,” Microbiology and Molecular Biology Reviews, June 2004; and Nigel Goldenfeld and Carl Woese, “Biology’s Next Revolution,” Nature, January 25, 2007. A slightly expanded version of the Nature article is available at http://arxiv.org/abs/q-bio/0702015v1.
2
WRITING NATURE’S GREATEST BOOK
IVAR EKELAND HAS a Norwegian name and teaches at the University of British Columbia in Canada, but the style and spirit of his book The Best of All Possible Worlds: Mathematics and Destiny are unmistakably French.* The book is a rapid run through the history of the last four hundred years, seen with the eyes of a French mathematician. Mathematics appears as a unifying principle for history. Ekeland moves easily from mathematics to physics, biology, ethics, and philosophy. The central figure of his narrative is the French savant Pierre de Maupertuis (1698–1759), a man of many talents, who formulated the principle of least action in 1745 in a memoir with the title The Laws of Motion and Rest Deduced from a Metaphysical Principle. The principle of least action says that nature arranges all
processes so as to minimize a quantity called action, which is a measure of the effort required to bring the processes to completion. The action of any mechanical motion is defined as the moving mass multiplied by the velocity and by the distance moved. Maupertuis was able to demonstrate mathematically that if a collection of objects moves in such a way as to make the total action as small as possible, then the movement obeys Newton’s laws of motion. Thus the whole science of Newtonian mechanics follows from the principle of least action.
Maupertuis was dazzled by the beauty of his discovery. “How satisfying for the human spirit,” he wrote, “to contemplate these laws, so beautiful and simple, which may be the only ones that the Creator and Ordainer of things has established in matter to sustain all phenomena of this visible world.” He went on to identify action with evil, so that the principle of least action became a principle of maximum goodness. He concluded that God has ordered the universe so as to maximize goodness. The world that we live in is the best of all the possible worlds that God might have created. This simple principle unites science with history and morality. Mathematics is the key to the understanding of human destiny.
One of the contemporaries of Maupertuis was Voltaire, the great skeptic, who demolished Maupertuis’s optimistic philosophy in a book with the title The Story of Doctor Akakia and the Native of Saint-Malo. Akakia is Greek for “absence of evil,” and the native of Saint-Malo is Maupertuis. “The native of Saint-Malo,” Voltaire writes, “had long fallen a prey to a chronic sickness, which some call philotimia [Greek for love of honors] and others philocratia [Greek for love of power].” Voltaire’s book sold well and Maupertuis’s day of glory ended. After Maupertuis died, Voltaire made him posthumously ridiculous by writing the novel Candide, in which Maupertuis appears as the optimistic philosopher Pangloss, wandering from one disaster to another but unshaken in his belief that “all is well that ends well in the best of all possible worlds.”
Maupertuis was in fact no Pangloss. He spent only a small part of his time as an optimistic philosopher. He was also a brilliant scientist and a capable administrator. He became famous as a young man for leading an expedition to Lapland to measure the shape of the earth at high latitude. His measurements were accurate enough to prove that the earth is not a perfect sphere but an ellipsoid, flattened at the poles as Newton predicted as a consequence of its rotation. This confirmation of Newton’s theory was historically important, since up to that time Newtonian physics was not widely known or accepted in France. Maupertuis also learned to travel on skis in Lapland, and brought home with him the first pair of skis that had ever been seen in France. For many years after the Lapland expedition, he was one of the most active members of the French Academy of Sciences. When King Frederick the Great of Prussia founded his own Academy of Sciences in Berlin, he invited Maupertuis to be the first president. Maupertuis spent the rest of his life in Berlin, successfully launching and running the Prussian Academy. Voltaire hated King Frederick, and Maupertuis’s friendship with the king gave Voltaire another reason to hate and belittle Maupertuis.
Ekeland’s sketch of history is divided into two parts: before Maupertuis and after Maupertuis. Before Maupertuis, the two chief characters are Galileo and René Descartes. Galileo started modern science by using the pendulum as a tool to make accurate measurements of time. Ancient Greek science was based on geometry, measuring space but not time. Archimedes understood statics but did not understand dynamics. Galileo with his pendulum and his falling weights made the decisive step from a static to a dynamic view of nature. He introduced time as a quantity accessible to mathematical analysis. He said, “Nature’s great book is written in mathematical symbols.” That remark by Galileo was the lever that moved the world into the modern era of scientific understanding.
After Galileo came Descartes, a great mathematician and a great philosopher but not yet a great scientist. Descartes took to heart Galileo’s insight that mathematics is the language that nature speaks. He tried to deduce the laws of nature from the laws of mathematics by pure reason alone. He did not listen to another statement by Galileo, that nature answers questions that we ask by doing experiments. Descartes held experimental results in low esteem, thinking them less trustworthy than logic. His was a normative science, telling nature what it was supposed to do, and not an experimental science, investigating what nature was actually doing. In 1637 Descartes published his great work, A Discourse on the Method of Rightly Conducting the Reason and of Seeking Truth in the Sciences. He describes a scientific method that is broad enough to deal with moral as well as with physical problems. “I showed what the laws of nature were,” he wrote,
and without basing my arguments on any principle other than the infinite perfections of God, I tried to demonstrate all those laws about which we could have any doubt, and to show that they are such that, even if God created many worlds, there could not be any in which they failed to be observed.
Ekeland concludes that Descartes’s method “has been used in science with tremendous success, and there is no reason why it should not be as useful in philosophy, or in trying to establish some principles by which to guide our collective and individual lives.” Unfortunately, the Cartesian way of doing science with minimum recourse to experimentation led him into bad mistakes. From his philosophical principle that nature abhors a vacuum, he was led to deduce that the space around the planets is filled with enormous vortices, or whirling masses, and that the pressure of the vortices confines the planets to their orbits and pushes them on their way. This theory of planetary motions was generally accepted in France as a preferable alternative to Newton’s theory of universal gravitation. Descartes also deduced that the rotating earth creates another enormous vortex that squeezes the earth into the shape of an American or rugby football. According to Descartes, the earth should be an ellipsoid elongated at the poles, instead of being flattened as predicted by Newton. Maupertuis’s measurements in Lapland proved Newton right and Descartes wrong.
Ekeland’s history continues after Maupertuis with a couple of great mathematicians—Joseph-Louis Lagrange and Henri Poincaré, who used the ideas of Maupertuis to build a grand edifice of classical dynamics. Poincaré, in the late nineteenth century, discovered chaos, a general property of dynamical systems that makes their behavior unpredictable over long times. He discovered that almost all complicated dynamical systems are chaotic. In particular, the orbital motions of planetary systems with more than two planets, and the fluid motions of atmospheres or oceans, are likely to be chaotic. The discovery of chaos opened a new chapter in the history of astronomy and meteorology, as well as in the history of mathematics.
After his discussion of Poincaré, Ekeland devotes chapters to biology and ethics, with backward glances to establish connections with Maupertuis. In biology, the guiding principle of evolution is the survival of the fittest. Darwin’s notion of nature selecting a population with maximum fitness resembles Maupertuis’s notion of God selecting a universe with maximum goodness. Darwin himself understood that fitness is not the same as goodness, but other evolutionary thinkers such as Herbert Spencer allowed the distinction between fitness and goodness to be blurred. Darwin rarely used the word “evolution,” which Spencer introduced into biology. Darwin preferred to speak of “descent with variation,” emphasizing the fact that variations are random and not usually progressive.
In ethics, the problem of optimization is even more tricky. Ekeland begins his discussion of ethics with Jean-Jacques Rousseau, the philosopher of the French Enlightenment, whose ideas prepared the way for the revolution of 1789. Rousseau believed that human beings were naturally virtuous and wise. They needed only to be set free from tyrannical governments, and then they would order their affairs harmoniously. A democratic government, responsive to the will of a free people, would make sure that everyone was treated fairly. Before the revolution could put these ideas to a practical test, some theoretical difficulties were raised by the Marquis de Condorcet, who for the first time us
ed mathematics to model human behavior. The marquis discovered a logical inconsistency known as Condorcet’s paradox, which demonstrates that an assembly ruling by majority vote may make decisions that are logically incompatible. For example, if three candidates A, B, C are running for a job to be filled by majority vote, it is possible that a majority prefers A to B, another majority prefers B to C, and a third majority prefers C to A. Then the result of the election will depend on the order in which the votes are taken. Another learned academician, the Chevalier de Borda, devised a system of preferential voting for election of members to the French Academy of Sciences. The Borda scheme avoided the Condorcet paradox, but led to another paradox that could be exploited by unscrupulous politicians to win elections. It turned out that no system of voting is free from mathematical paradoxes. And the revolution, when it came, brought a quarter-century of death and destruction instead of the peace and harmony that Rousseau had promised.
To sum up the lessons to be learned from history, Ekeland writes:
We have now reached the end of our journey. It started in the world of the Renaissance, impregnated with Christian values.… The laws of nature then are simply the rules God followed when creating the world, and the purpose of science is to recover them from observations. There is then also a deeper science, which is to seek the purpose God himself had in creating the world. This is what Maupertuis, in a glorious moment, thought he had achieved, thereby reconciling forever science and religion, both being the quest for God’s will, in the physical world and in the moral one. Our journey ends in a world where God has receded, leaving humankind alone in a world not of its choosing.
Dreams of Earth and Sky Page 3