The Science of Discworld I tsod-1

Home > Other > The Science of Discworld I tsod-1 > Page 13
The Science of Discworld I tsod-1 Page 13

by Terry Pratchett


  But you don't have to use just one telescope.

  A technique known as 'interferometry' makes it possible, in principle, to replace a single mirror 100 yards wide by two much smaller mirrors 100 yards apart. Both produce images of the same star or planet, and the incoming light waves that form those images are aligned very accurately and combined. The two-mirror system gathers less light than a complete 100-yard mirror would, but it can resolve the same amount of tiny detail. And with modern electron­ics, very small quantities of incoming light can be amplified. In any case, what you actually do is use dozens of smaller mirrors, together with a lot of clever trickery that keeps them aligned with each other and combines the images that they receive in an effective manner.

  Radio astronomers use this technique all the time. The biggest technical problem is keeping the length of the path from the star to its image the same for all of the smaller telescopes, to within an accuracy of one wavelength. The technique is relatively new in optical astronomy, because the wavelength of visible light is far shorter than that of radio waves, but for visible light the real killer is that it's not worth bothering if your telescopes are on the ground. The Earth's atmosphere is in continual turbulent motion, bending incoming light in unpredictable ways. Even a very powerful ground-based telescope will produce a fuzzy image, which is why the Hubble Space Telescope is in orbit round the Earth. Its planned successor, the Next Generation Space Telescope, will be a million miles away, orbiting the Sun, delicately poised at a place called Lagrange point L2. This is a point on the line from the Sun to the Earth, but further out, where the Sun's gravity, the Earth's gravity, and the centrifugal force acting on the orbiting telescope all cancel out. Hubble's structure includes a heavy tube which keeps out unwanted light, especially light reflected from our own planet. It's a lot darker out near L2, and that cumbersome tube can be dis­pensed with, saving launch fuel. In addition, L2 is a lot colder than low Earth orbit, and that makes infra-red telescopy much more effective.

  Interferometry uses a widely separated array of small telescopes instead of one big one, and for optical astronomy the array has to be set up in space. This produces an added advantage, because space is big, or, in more Discworldly terms, a place to be big in. The biggest distance between telescopes in the array is called the baseline. Out in space you can create interferometers with gigantic baselines, radio astronomers have already made one that is bigger than the Earth by using one ground-based telescope antenna and one in orbit. Both NASA and the European Space Agency ESA have mis­sions on the drawing-board for putting prototype optical interferometer arrays, 'flocks' is a more evocative term, into space. Some time around 2002 NASA will launch Deep Space 3, involving two spacecraft flying 1 kilometre apart and maintaining station relative to each other to a precision of less than half an inch (1 cm). Another NASA venture, the Space Interferometry Mission, will employ seven or eight optical telescopes bolted to a rigid arm 10-15 yards (10-15 m) long. In 2009 ESA hopes to launch its Infrared Space Interferometer, not to image distant planets but to find out what their atmospheres are made of by looking for telltale absorption lines in their spectra.

  The biggest dream of all, though, is NASA's Planet Imager, pen­cilled in for 2020. A squadron of spacecraft, each equipped with four optical telescopes, will deploy itself into an interferometer with a baseline of several thousand miles, and start mapping alien plan­ets. The nearest star is just over four light years away; computer simulations show that 50 telescopes with a baseline of just 95 miles (150 km) can produce images of a planet 10 light years away that are good enough to spot continents and even moons the size of ours. With 150 telescopes and the same baseline, you could look at the Earth from 10 light years away and see hurricanes in its atmosphere. Think what could be done with a thousand-mile baseline.

  Planets outside our solar system do exist, then, and they probably exist in abundance. That's good news if you're hoping that some­where out there are alien lifeforms. The evidence for those, though, is controversial.

  Mars, of course, is the traditional place where we expect to find life in the solar system, partly because of myths about Martian 'canals' which astronomers thought they'd seen in their telescopes but which turned out to be illusions when we sent spacecraft out there to take a close look, partly because conditions on Mars are in some ways similar to those on Earth, though generally nastier, and partly because dozens of science-fiction books have subliminally prepared us for the existence of Martians. Life does show up in nasty places here, finding a foothold in volcanic vents, in deserts, and deep in the Earth's rocks. Nevertheless, we've found no signs of life on Mars.

  Yet.

  For a while, some scientists thought we had. In 1996 NASA announced signs of life on Mars. A meteorite dug up in the Antarctic with the code number ALH84001 had been knocked off Mars 15 million years ago by a collision with an asteroid, and plunged to Earth 13,000 years ago. When it was sliced open and the interior examined at high magnification we found three possible signs of life. These were markings like tiny fossil bacteria, crystals containing iron like those made by certain bacteria, and organic molecules resembling some found in fossil bacteria on Earth. It all pointed to: Martian bacteria! Not surprisingly, this claim led to a big argument, and the upshot is that all three discoveries are almost certainly not evidence for life at all. The fossil 'bacteria' are much too small and most of them are steps on crystal surfaces that have caused funny shapes to form in the metal coatings used in electron microscopy; the iron-bearing crystals can be explained without invoking bacteria at all; and the organic molecules could have got there without the aid of Martian life.

  However, in 1998 the Mars Global Surveyor did find signs of an ancient ocean on Mars. At some point in the planet's history, huge amounts of water gushed out of the highlands and flowed into the northern lowlands. It was thought that this water just seeped away or evaporated, but it now turns out that the edges of the northern lowlands are ail at much the same height, like shorelines eroded by an ocean. The ocean, if it existed, covered a quarter of Mars's sur­face. If it contained life, there ought to be Martian fossils for us to find, dating from that period.

  The current favourite for life in the solar system is a surprise, at least to people who don't read science fiction: Jupiter's satellite Europa. It's a surprise because Europa is exceedingly cold, and cov­ered in thick layers of ice. However, that's not where the life is suspected to live. Europa is held in Jupiter's massive gravitational grasp, and tidal forces warm its interior. This could mean that the deeper layers of the ice have melted to form a vast underground ocean. Until recently this was pure conjecture, but the evidence for liquid water beneath Europa's surface has now become very strong indeed. It includes the surface geology, gravitational measurements, and the discovery that Europa's interior conducts electricity. This finding, made in 1998 by K.K.Khurana and others, came from observations of the worldlet's magnetic field made by the space probe Galileo, The shape of the magnetic field is unusual, and the only reasonable explanation so far is the existence of an under­ground ocean whose dissolved salts make it a weak conductor of electricity. Callisto, another of Jupiter's moons, has a similar mag­netic field, and is now also thought to have an underground ocean. In the same year, T.B.McCord and others observed huge patches of hydrated salts (salts whose molecules contain water) on Europa's surface. This might perhaps be a salty crust deposited by upwelling water from a salty ocean.

  There are tentative plans to send out a probe to Europa, land it, and drill down to see what's there. The technical problems are for­midable, the ice layer is at least ten miles (16 km) thick, and the operation would have to be carried out very carefully so as not to disturb or destroy the very thing we're hoping to find: Europan organisms. Less invasively, it would be possible to look for tell-tale molecules of life in Europa's thin atmosphere, and plans are afoot to do this too. Nobody expects to find Europan antelopes, or even fishes, but it would be surprising if Europa's water-based chemistr
y, apparently an ocean a hundred miles (160 km) deep, has not pro­duced life. Almost certainly there are sub-oceanic 'volcanoes' where very hot sulphurous water is vented through the ocean floor. These provide a marvellous opportunity for complicated chemistry, much like the chemistry that started life on Earth.

  The least controversial possibility would be an array of simple bacteria-like chemical systems forming towers around the hot vents, much as Earthly bacteria do in the Baltic sea. More complicated creatures like amoebas and parameciums would be a pleasant sur­prise; anything beyond that, such as multicellular organisms, would be a bonus. Don't expect plants, there's not enough light that far from the sun, even if it could filter down through the layers of ice. Europan life would have to be powered by chemical energy, as it is around Earth's underwater volcanic vents. Don't expect Europan lifeforms to look like the ones round our vents, though: they will have evolved in a different chemical environment.

  15. THE DAWN OF DAWN

  PONDER OPENED HIS EYES and looked up into a face out of time. A mug of tea was thrust towards him. It had a banana stuck in it. 'Ah ... Librarian,' said Ponder weakly, taking the cup. He drank, stabbing himself harmlessly in the left eye. The Librarian thought that practically everything could be improved by the addition of soft fruit, but apart from that he was a kindly soul, always ready with a helping hand and a banana[23].

  The wizards had put Ponder to sleep on a bench in the store­room. Dusty items of magical gear were stacked from floor to ceiling. Most of it was broken, and all of it was covered in dust.

  Ponder sat up and yawned.

  'What time is it?'

  'Ook.'

  'Gosh, that late?'

  As the warm clouds of sleep ebbed, it dawned on Ponder that he had left the Project entirely in the hands of the senior faculty. The Librarian was impressed at how long the door kept swinging.

  Most of the main laboratory was empty, except for the pool of light around the Project.

  The Dean's voice said, 'Mappin Winterley ... that's a nice name?'

  'Shutup.'

  'Owen Houseworthy?'

  'Shutup.'

  'William.'

  'Shut up, Dean. That's not funny. It never was funny.' This was the voice of the Archchancellor.

  'Just as you say, Gertrude.'

  Ponder advanced towards the glowing Project.

  'Ah, Ponder,' said the Senior Wrangler, stepping in front of it hurriedly. 'Good to see you looking so…'

  'You've been ... doing things, haven't you,' said Ponder, trying to see around him.

  'I'msure everything can be mended,' said the Lecturer in Recent Runes.

  'And it's still nearly circular,' said the Dean, 'Just ask Charlie Grinder here. His name's definitely not Mustrum Ridcully, I know that.'

  'I'm warning you, Dean...'

  'What have you done?'

  Ponder looked at his globe. It was certainly warmer now, and also rather less globular. There were livid red wounds across one side, and the other hemisphere was mainly one big fiery crater. It was spinning gently, wobbling as it did so.

  'We've saved most of the bits,' said the Senior Wrangler, watch­ing him hopefully

  'What did you do?'

  'We were only trying to be helpful,' said the Dean. 'Gertrude here suggested we make a sun, and...'

  'Dean?' said Ridcully

  'Yes, Archchancellor?'

  'I would just like to point out, Dean, that it was not a very funny joke to begin with. It was a pathetic attempt, Dean, at dragging a sad laugh out of a simple figure of speech. Only four-year-olds and people with a serious humour deficiency keep on and on about it. I just wanted to bring this out into the open, Dean, calmly and in a spirit of reconciliation, for your own good, in the hope that you may be made well. We are all here for you, although I can't imagine what you are here for.' Ridcully turned to the horrified Ponder. 'We made a sun...'

  ‘...some suns...' muttered the Dean.

  ‘...some suns, yes, but ... well, this "falling in circles" business is very difficult, isn't it? Very hard to get the hang of.'

  'You crashed a sun into my world?' said Ponder.

  'Some suns,' said Ridcully.

  'Mine bounced off,' said the Dean.

  'And created this rather embarrassingly large hole here,' said the Archchancellor. 'And incidentally knocked a huge lump out of the place.'

  'But at least bits of my sun burned for a long time,' said the Dean.

  'Yes, but inside the world. That doesn't count.' Ridcully sighed. 'Yet your machine, Mister Stibbons, says a sun sixty miles across won't work. And that's ridiculous.'

  Ponder stared hollow-eyed at his world, wobbling around like a crippled duck.

  'There's no narrativium,' he said dully. 'It doesn't know what size a sun should be.'

  'Ook,' said the Librarian.

  'Oh dear,' said Ridcully. 'Who let him in here?'

  The Librarian was informally banned from the High Energy Magic building, owing to his inherent tendency to check on what things were by tasting them. This worked very well in the Library, where taste had become a precision reference system, but was less useful in a room occasionally containing bus bars throbbing with several thousand thaums. The ban was informal, of course, because anyone capable of pulling the dooknob right through an oak door can obviously go where he likes.

  The orangutan knuckled over to the dome and tasted it. The wizards tensed as delicate black fingers twiddled the knobs of the omniscope, bringing into focus the furnace that had exploded yes­terday. It was a tiny point of light now, surrounded by coruscating streamers of glowing gas.

  The focus moved in to the glowing ember.

  'Still too big,' said Ridcully. 'Nice try, old chap.'

  The Librarian turned towards him, the light of the explosion moving across his face, and Ponder held his breath.

  It came out in a rush. 'Someone give me a light!'

  The globes on his desk rolled off and bounced on the floor as he tried to grab one. He held it as the Senior Wrangler obligingly lit a match, and waggled it this way and that. 'It'll work!' 'Jolly good!' said Ridcully. 'What will?'

  'Days and nights!' said Ponder. 'Seasons, too, if we do it right! Well done, sir! I'm not sure about the wobble, but you might have got it just right!'

  'That's the kind of thing we do,' said Ridcully, beaming. 'We're the chaps for getting things right, sure enough. What things did we get right this time?'

  'The spin!'

  'That was my sun that did that,' the Dean pointed out, smugly.

  Ponder was almost dancing. And then, suddenly, he looked grave.

  'But it all depends on fooling people down there,' he said. 'And there isn't anyone down there ,.. HEX?'

  There was a mechanical rattle as HEX paid attention.

  +++Yes? +++

  'Is there any way we can get onto the world?'

  +++ Nothing Physical May Enter The Project +++

  'I want someone down there to observe things from the surface.'

  +++ That Is Possible. Virtually Possible +++

  'Virtually?'

  +++ But You Will Need A Volunteer. Someone To Fool +++

  'This is Unseen University,' said the Archchancellor 'That should present no problem.'

  16. EARTH AND FIRE

  WE DON'T KNOW IF THE EARTH IS A TYPICAL PLANET. We don't know how common 'aqueous' planets with oceans and continents and atmospheres are. In our solar system, Earth is the only one. And we'd better be careful about phrases like 'earthlike planet', because for about half of Earth's history it has not been the familiar blue-green planet that we see in satellite photos, with its oxygen atmosphere, white clouds, and everything else that we are used to. In order to get an earthlike planet, in today's sense, you have to start with an unearthlike planet and wait a few billion years. And what you get is quite different from what, only a few decades ago, we thought the Earth was like.

  We thought it was a very stable place, that if you could go back to the time
when the oceans and continents first separated out, they'd have been in the same places they are now. And we thought that the interior of the Earth was pretty simple. We were wrong.

  We know a lot about the surface of the Earth, but we still know much less about what's inside it. We can study the surface by going there, which is usually fairly easy, unless we want to look at the top of Everest. We can also penetrate the ocean depths using vehicles that can protect frail humans against the huge pressures of the deep seas, and we can dig holes down into the ground and send people down those too. We can get further information about the top few miles of the Earth's crust by drilling, but that's just a thin skin, comparatively speaking. We have to infer what it's like deeper down from indirect observations, of which the most important are shock-waves emitted by earthquakes, laboratory experiments, and theory. The surface of our planet generally seems fairly placid, apart from weather and the sometimes severe effects of the seasons, but there are plenty of volcanoes and earthquakes to remind us that not so far below our feet it's a lot less hospitable. Volcanoes form where the molten rocks inside the Earth well up to the surface, often accompanied by massive clouds of gas or ash, all of it emerging under high pressure. In 1980 Mount St Helens in Washington State, USA blew up like a pressure-cooker whose lid had been tied down, and about half of a large mountain simply disappeared. Earthquakes happen when the Earth's crustal rocks slide past each other along deep cracks. Later we'll see what drives these two things, but they need to be put into perspective: despite occasional disasters, the surface of the Earth has been sufficiently hospitable for life to have evolved and survived for several billion years.

  The Earth is nearly spherical, having a diameter of 7,928 miles (12,756 km) at the equator but only 7,902 miles (12,714 km) from pole to pole. The slight broadening at the equator is the result of centrifugal forces from the Earth's spin, and originally set in when the planet was molten. The Earth is the densest planet in the solar system, with an average density 5.5 times that of water. When the Earth condensed from the primal dustcloud the chemical elements and compounds that formed it separated into layers: the denser materials sank to the centre of the Earth and the lighter ones floated to the top, much as a layer of light oil floats on denser water.

 

‹ Prev