Since drift seemed absurd in the absence of a mechanism, orthodox geologists set out to render the impressive evidence for it as a series of unconnected coincidences.
In 1932, the famous American geologist Bailey Willis strove to make the evidence of glaciation compatible with static continents. He invoked the deus ex machina of “isthmian links”—narrow land bridges flung with daring abandon across 3,000 miles of ocean. He placed one between eastern Brazil and western Africa, another from Africa all the way to India via the Malagasy Republic, and a third from Vietnam through Borneo and New Guinea to Australia. His colleague, Yale professor Charles Schuchert, added one from Australia to Antarctica and another from Antarctica to South America, thus completing the isolation of a southern ocean from the rest of the world’s waters. Such an isolated ocean might freeze along its southern margin, permitting glaciers to flow across into eastern South America. Its cold waters would also nourish the glaciers of southern Africa. The Indian glaciers, located above the equator 3,000 miles north of any southern ice, demanded a separate explanation. Willis wrote: “No direct connection between the occurrences can reasonably be assumed. The case must be considered on the basis of a general cause and the local geographic and topographic conditions.” Willis’s inventive mind was equal to the task: he simply postulated a topography so elevated that warm, wet southern waters precipitated their product as snow. For the absence of ice in temperate and arctic zones of the Northern Hemisphere, Willis reconstructed a system of ocean currents that permitted him to postulate “a warm, subsurface current flowing northward beneath cooler surface waters and rising in the Artctic as a warm-water heating system.” Schuchert was delighted with the resolution provided by isthmian links:
Grant the biogeographer Holarctis, a land bridge from northern Africa to Brazil, another from South America to Antarctis (it almost exists today), still another from this polar land to Australia and from the latter across the Arafura Sea to Borneo and Sumatra and so on to Asia, plus the accepted means of dispersal along shelf seas and by wind and water currents and migratory birds, and he has all the possibilities needed to explain the life dispersion and the land and ocean realms throughout geological time on the basis of the present arrangement of the continents.
The only common property shared by all these land bridges was their utterly hypothetical status; not an iota of direct evidence supported any one of them. Yet, lest the saga of isthmian links be read as a warped fairy tale invented by dogmatists to support an untenable orthodoxy, I point out that to Willis, Schuchert, and any right-thinking geologist of the 1930s, one thing legitimately seemed ten times as absurd as imaginary land bridges thousands of miles long—continental drift itself.
In the light of such highly fertile imaginations, the Cambrian trilobites could present no insuperable problem. The Atlantic and Pacific provinces were interpreted as different environments, rather than different places—shallow water for the Pacific, deeper for the Atlantic. With a freedom to invent nearly any hypothetical geometry for Cambrian ocean basins, geologists drew their maps and hewed to their orthodoxy.
When continental drift came into fashion during the late 1960s, the classical data from continental rocks played no role at all: drift rode in on the coattails of a new theory, supported by new types of evidence. The physical absurdities of Wegener’s theory rested on his conviction that continents cut their way through the ocean floor. But how else could drift occur? The ocean floor, the crust of the earth, must be stable. After all, where could it go, if it moved in pieces, without leaving gaping holes in the earth? Nothing could be clearer. Or could it?
“Impossible” is usually defined by our theories, not given by nature. Revolutionary theories trade in the unexpected. If continents must plow through oceans, then drift will not occur; suppose, however, that continents are frozen into the oceanic crust and move passively as pieces of crust shift about. But we just stated that the crust cannot move without leaving holes. Here, we reach an impasse that must be bridged by creative imagination, not just by another field season in the folded Appalachians—we must model the earth in a fundamentally different way.
We can avoid the problem of holes with a daring postulate that seems to be valid. If two pieces of ocean floor move away from each other, they will leave no hole if material rises from the earth’s interior to fill the gap. We can go further by reversing the causal implications of this statement: the rise of new material from the earth’s interior may be the driving force that moves old sea floor away. But since the earth is not expanding, we must also have regions where old sea floor founders into the earth’s interior, thus preserving a balance between creation and destruction.
Indeed, the earth’s surface seems to be broken into fewer than ten major “plates,” bounded on all sides by narrow zones of creation (oceanic ridges) and destruction (trenches). Continents are frozen into these plates, moving with them as the sea floor spreads away from zones of creation at oceanic ridges. Continental drift is no longer a proud theory in its own right; it has become a passive consequence of our new orthodoxy—plate tectonics.
We now have a new, mobilist orthodoxy, as definite and uncompromising as the staticism it replaced. In its light, the classical data for drift have been exhumed and proclaimed as proof positive. Yet these data played no role in validating the notion of wandering continents; drift triumphed only when it became the necessary consequence of a new theory.
The new orthodoxy colors our vision of all data; there are no “pure facts” in our complex world. About five years ago, paleontologists found on Antarctica a fossil reptile named Lystrosaurus. It also lived in South Africa, and probably in South America as well (rocks of the appropriate age have not been found in South America). If anyone had floated such an argument for drift in the presence of Willis and Schuchert, he would have been howled down—and quite correctly. For Antarctica and South America are almost joined today by a string of islands, and they were certainly connected by a land bridge at various times in the past (a minor lowering of sea level would produce such a land bridge today). Lystrosaurus may well have walked in comfort, on a rather short journey at that. Yet the New York Times wrote an editorial proclaiming, on this basis alone, that continental drift had been proved.
Many readers may be disturbed by my argument for the primacy of theory. Does it not lead to dogmatism and disrespect for fact? It can, of course, but it need not. The lesson of history holds that theories are overthrown by rival theories, not that orthodoxies are unshakable. In the meantime, I am not distressed by the crusading zeal of plate tectonics, for two reasons. My intuition, culturally bound to be sure, tells me that it is basically true. My guts tell me that it’s damned exciting—more than enough to show that conventional science can be twice as interesting as anything invented by all the von Dänikens and in all the Bermuda triangles of this and previous ages of human gullibility.
6 | Size and Shape, from Churches to Brains to Planets
21 | Size and Shape
Who could believe an ant in theory?
A giraffe in blueprint?
Ten thousand doctors of what’s possible
Could reason half the jungle out of being.
JOHN CIARDI’S lines reflect a belief that the exuberant diversity of life will forever frustrate our arrogant claims to omniscience. Yet, however much we celebrate diversity and revel in the peculiarities of animals, we must also acknowledge a striking “lawfulness” in the basic design of organisms. This regularity is most strongly evident in the correlation of size and shape.
Animals are physical objects. They are shaped to their advantage by natural selection. Consequently, they must assume forms best adapted to their size. The relative strength of many fundamental forces (gravity, for example) varies with size in a regular way, and animals respond by systematically altering their shapes.
The geometry of space itself is the major reason for correlations between size and shape. Simply by growing larger, any object will suffer continual
decrease in relative surface area when its shape remains unchanged. This decrease occurs because volume increases as the cube of length (length X length X length), while surface increases only as the square (length X length): in other words, volume grows more rapidly than surface.
Why is this important to animals? Many functions that depend upon surfaces must serve the entire volume of the body. Digested food passes to the body through surfaces; oxygen is absorbed through surfaces in respiration; the strength of a leg bone depends upon the area of its cross section, but the legs must hold up a body increasing in weight by the cube of its length. Galileo first recognized this principle in his Discorsi of 1638, the masterpiece he wrote while under house arrest by the Inquisition. He argued that the bone of a large animal must thicken disproportionately to provide the same relative strength as the slender bone of a small creature.
Galileo’s original illustration of the relationship between size and shape. To maintain the same strength, large cylinders must be relatively thicker than small ones. For exactly the same reason, large animals have relatively thick leg bones.
One solution to decreasing surface has been particularly important in the progressive evolution of large and complex organisms: the development of internal organs. The lung is, essentially, a richly convoluted bag of surface area for the exchange of gases; the circulatory system distributes material to an internal space that cannot be reached by direct diffusion from the external surface of large organisms; the villi of our small intestine increase the surface area available for absorption of food (small mammals neither have nor need them).
Some simpler animals have never evolved internal organs; if they become large, they must alter their entire shape in ways so drastic that plasticity for further evolutionary change is sacrificed to extreme specialization. Thus, a tapeworm may be 20 feet long, but its thickness cannot exceed a fraction of an inch because food and oxygen must penetrate directly from the external surface to all parts of the body.
Other animals are constrained to remain small. Insects breathe through invaginations of their external surface. Oxygen must pass through these surfaces to reach the entire volume of the body. Since these invaginations must be more numerous and convoluted in larger bodies, they impose a limit upon insect size: at the size of even a small mammal, an insect would be “all invagination” and have no room for internal parts.
We are prisoners of the perceptions of our size, and rarely recognize how different the world must appear to small animals. Since our relative surface area is so small at our large size, we are ruled by gravitational forces acting upon our weight. But gravity is negligible to very small animals with high surface to volume ratios; they live in a world dominated by surface forces and judge the pleasures and dangers of their surroundings in ways foreign to our experience.
An insect performs no miracle in walking up a wall or upon the surface of a pond; the small gravitational force pulling it down or under is easily counteracted by surface adhesion. Throw an insect off the roof and it floats gently down as frictional forces acting upon its surface overcome the weak influence of gravity.
The relative weakness of gravitational forces also permits a mode of growth that large animals could not maintain. Insects have an external skeleton and can only grow by discarding it and secreting a new one to accommodate the enlarged body. For a period between shedding and regrowth, the body must remain soft. A large mammal without any supporting structures would collapse to a formless mass under the influence of gravitational forces; a small insect can maintain its cohesion (related lobsters and crabs can grow much larger because they pass their “soft” stage in the nearly weightless buoyancy of water). We have here another reason for the small size of insects.
The creators of horror and science-fiction movies seem to have no inkling of the relationship between size and shape. These “expanders of the possible” cannot break free from the prejudices of their perceptions. The small people of Dr. Cyclops, The Bride of Frankenstein, The Incredible Shrinking Man, and Fantastic Voyage behave just like their counterparts of normal dimensions. They fall off cliffs or down stairs with resounding thuds; they wield weapons and swim with olympic agility. The large insects of films too numerous to name continue to walk up walls or fly even at dinosaurian dimensions. When the kindly entomologist of Them discovered that the giant queen ants had left for their nuptial flight, he quickly calculated this simple ratio: a normal ant is a fraction of an inch long and can fly hundreds of feet; these ants are many feet long and must be able to fly as much as 1,000 miles. Why, they could be as far away as Los Angeles! (Where, indeed, they were, lurking in the sewers.) But the ability to fly depends upon the surface area of wings, while the weight that must be borne aloft increases as the cube of length. We may be sure that even if the giant ants had somehow circumvented the problems of breathing and growth by molting, their sheer bulk would have grounded them permanently.
Other essential features of organisms change even more rapidly with increasing size than the ratio of surface to volume. Kinetic energy, in some situations, increases as length raised to the fifth power. If a child half your height falls down, its head will hit with not half, but only 1/32 the energy of yours in a similar fall. A child is protected more by its size than by a “soft” head. In return, we are protected from the physical force of its tantrums, for the child can strike with, not half, but only 1/32 of the energy we can muster. I have long had a special sympathy for the poor dwarfs who suffer under the whip of cruel Alberich in Wagner’s Das Rheingold. At their diminutive size, they haven’t a chance of extracting, with mining picks, the precious minerals that Alberich demands, despite the industrious and incessant leitmotif of their futile attempt.4
This simple principle of differential scaling with increasing size may well be the most important determinant of organic shape. J. B. S. Haldane once wrote that “comparative anatomy is largely the story of the struggle to increase surface in proportion to volume.” Yet its generality extends beyond life, for the geometry of space constrains ships, buildings, and machines, as well as animals.
Medieval churches present a good testing ground for the effects of size and shape, for they were built in an enormous range of sizes before the invention of steel girders, internal lighting, and air conditioning permitted modern architects to challenge the laws of size. The small, twelfth-century parish church of Little Tey, Essex, England, is a broad, simple rectangular building with a semicircular apse. Light reaches the interior through windows in the outer walls. If we were to build a cathedral simply by enlarging this design, then the area of outer walls and windows would increase as length squared, while the volume that light must reach would increase as length cubed. In other words, the area of the windows would increase far more slowly than the volume that requires illumination. Candles have limitations; the inside of such a cathedral would have been darker than the deed of Judas. Medieval churches, like tapeworms, lack internal systems and must alter their shape to produce more external surface as they are made larger. In addition, large churches had to be relatively narrow because ceilings were vaulted in stone and large widths could not be spanned without intermediate supports. The chapter house at Batalha, Portugal—one of the widest stone vaults in medieval architecture—collapsed twice during construction and was finally built by prisoners condemned to death.
The great range of designs among medieval churches can be attributed partly to size. The twelfth-century parish church of Little Tey, Essex, England, was only 57 feet long and had a simple floor plan, top, while the floor plan for Norwich Cathedral, also twelfth century, shows adaptations—transept, chapels—required for the 450-foot-long building. The need for light and support dictated complex cathedral layouts. (A. W. Clapham, English Romanesque Architecture: After the Conquest, Clarendon Press Oxford, 1934. Reprinted with the permission of Oxford University Press)
Consider the large cathedral of Norwich, as it appeared in the twelfth century. In comparison with Little Tey, the rectan
gle of the nave has become much narrower; chapels have been added to the apse, and a transept runs perpendicular to the main axis. All these “adaptations” increase the ratio of external wall and window to internal volume. It is often stated that transepts were added to produce the form of a Latin cross. Theological motives may have dictated the position of such “outpouchings,” but the laws of size required their presence. Very few small churches have transepts. Medieval architects had their rules of thumb, but they had, so far as we know, no explicit knowledge of the laws of size.
Large organisms, like large churches, have very few options open to them. Above a certain size, large terrestrial animals look basically alike—they have thick legs and relatively short, stout bodies. Large medieval churches are relatively long and have abundant outpouchings. The “invention” of internal organs allowed animals to retain the highly successful shape of a simple exterior enclosing a large internal volume; the invention of internal lighting and structural steel has permitted modern architects to design large buildings of essentially cubic form. The limits are expanded, but the laws still operate. No large Gothic church is wider than long; no large animal has a sagging middle like a dachshund.
Ever Since Darwin: Reflections in Natural History Page 15