Book Read Free

Pale Blue Dot: A Vision of the Human Future in Space

Page 11

by Carl Sagan


  But Uranus is another story. Uranus is an anomaly among the Jovian planets. Uranus is like the Earth: There's very little intrinsic heat pouring out. We have no good understanding of why this should be, why Uranus—which in many respects is so similar to Neptune—should lack a potent source of internal heat. For this reason, among others, we cannot say we understand what is going on in the deep interiors of these mighty worlds.

  Uranus is lying on its side as it goes around the Sun. In the 1990s. the south pole is heated by the Sun, and it is this pole that Earthbound observers at the end of the twentieth century see when they look at Uranus. It takes Uranus 84 Earth years to make one circuit of the Sun. So in the 2030s, the north pole will be sunward (and Earthward). In the 2070s the south pole will be pointing to the Sun once again. In between, Earthbound astronomers will be looking mainly at equatorial latitudes.

  All the other planets spin much more upright in their orbits. No one is sure of the reason for Uranus' anomalous spin; the most promising suggestion is that sometime in its early history, billions of years ago, it was struck by a rogue planet, about the size of the Earth, in a highly eccentric orbit. Such a collision, if it ever happened, must have worked much tumult in the Uranus system; for all we know, there may be other vestiges of ancient havoc still left for us to find. But Uranus' remoteness tends to guard its mysteries.

  In 1977 a team of scientists led by James Elliot, then of Cornell University, accidentally discovered that, like Saturn, Uranus has rings. The scientists were flying over the Indian Ocean in a special NASA airplane—the Kuiper Airborne Observatory—to witness the passage of Uranus in front of a star. (Such passages, or occultations as they're called, happen from time to time, precisely because Uranus slowly moves with respect to the distant stars.) The observers were surprised to find that the star winked on and off several times just before it passed behind Uranus and its atmosphere, then several times more just after it emerged. Since the patterns of winking on and off were the same before and after occultation, this finding (and much subsequent work) has led to the discovery of nine very thin, very dark circumplanetary rings, giving Uranus the appearance of a bull's-eye in the sky.

  Surrounding the rings, Earthbound observers understood were the concentric orbits of the five moons then known: Miranda, Ariel, Umbriel, Titania, and Oberon. They're named after characters in Shakespeare's A Midsummer Night's Dream and The Tempest, and in Alexander Pope's The Rape of the Lock. Two of them were found by Herschel himself. The innermost of the five, Miranda, was discovered as recently as 1948, by my teacher G. P. Kuiper.1 I remember how great an achievement the discovery of a new moon of Uranus was considered back then. The near-infrared light reflected by all five moons subsequently revealed the spectral signature of ordinary water ice on their Surfaces. And no wonder—Uranus is so far from the Sun that it is no brighter there at noontime than it is after sunset on Earth. The temperatures are frigid. Any water must be frozen.

  A REVOLUTION IN OUR UNDERSTANDING of the Uranus system—the planet, its rings, and its moons—began on January 24, 1986. On that day, after a journey of 8½ years, the Voyager 2 spacecraft sailed very near to Miranda, and hit the bull's-eye in the sky. Uranus' gravity then flung it on to Neptune. The spacecraft returned 4,300 close-up pictures of the Uranus system and a wealth of other data.

  Uranus was found to be surrounded by an intense radiation belt, electrons and protons trapped by the planet's magnetic field. Voyager flew through this radiation belt, measuring the magnetic field and the trapped charged particles as it went. It also detected—in changing timbres, harmonies, and nuance, but mainly in fortissimo—a cacophony of radio waves generated by the speeding, trapped particles. Something similar was discovered on Jupiter and Saturn and would be later found at Neptune—but always with a theme and counterpoint characteristic of each world.

  On Earth the magnetic and geographical poles are quite close together. On Uranus the magnetic axis and the axis of rotation are tilted away from each other by some 60 degrees. No one yet understands why: Some have suggested that we are catching Uranus in a reversal of its north and south magnetic poles, as periodically happens on Earth. Others propose that this too is the consequence of that mighty, ancient collision that knocked the planet over. But we do not know.

  Uranus is emitting much more ultraviolet light than it's receiving from the Sun, probably generated by charged particles leaking out of the magnetosphere and striking its upper atmosphere. From a vantage point in the Uranus system, the spacecraft examined a bright star winking on and off as the rings of Uranus passed by. New faint dust bands were found. From the perspective of Earth, the spacecraft passed behind Uranus; so the radio signals it was transmitting back home passed tangentially through the Uranian atmosphere, probing it—to below its methane clouds. A vast and deep ocean, perhaps 8,000 kilometers thick, of super-heated liquid water floating in the air is inferred by some.

  Among the principal glories of the Uranus encounter were the pictures. With Voyager's two television cameras, we discovered ten new moons, determined the length of the day in the clouds of Uranus (about 17 hours), and studied about a dozen rings. The most spectacular pictures were those returned from the five larger, previously known moons of Uranus, especially the smallest of them, Kuiper's Miranda. Its surface is a tumult of fault valleys, parallel ridges, sheer cliffs, low mountains, impact craters, and frozen floods of once-molten surface material. This turmoiled landscape is unexpected for a small, cold, icy world so distant from the Sun. Perhaps the surface was melted and reworked in some long-gone epoch when a gravitational resonance between Uranus, Miranda, and Ariel pumped energy from the nearby planet into Miranda's interior. Or perhaps we are seeing the results of the primordial collision that is thought to have knocked Uranus over. Or, just conceivably, maybe Miranda was once utterly destroyed, dismembered, blasted into smithereens by a wild careening world, with many collision fragments still left in Miranda's orbit. The shards and remnants, slowly colliding, gravitationally attracting one another, may have re-aggregated into just such a jumbled, patchy, unfinished world as Miranda is today.

  For me, there's something eerie about the pictures of dusky Miranda, because I can remember so well when it `vas only a faint point of light almost lost in the glare of Uranus, discovered through great difficulty by dint of the astronomer's skills and patience. In only half a lifetime it has gone from an undiscovered world to a destination whose ancient and idiosyncratic secrets have been at least partially revealed.

  CHAPTER 9: AN AMERICAN SHIP AT THE FRONTIERS OF THE SOLAR SYSTEM

  . . . by the shore

  Of Triton's Lake . . .

  I will clear my breast of secrets.

  —EURIPIDES, ION (CA. 413 B.C.)

  Neptune was the final port of call in Voyager 2's grand tour of the Solar System. Usually, it is thought of as the penultimate planet, with Pluto the outermost. But because of Pluto's stretched-out, elliptical orbit, Neptune has lately been the outermost planet, and will remain so until 1999. Typical temperatures in its upper clouds are about -240°C, because it is so far from the warming rays of the Sun. It would be colder still except for the heat welling up from its interior. Neptune glides along the hem of interstellar night. It is so far away that, in its sky, the Sun appears as little more than an extremely bright star.

  How far? So far away that it has yet to complete a single trip around the Sun, a Neptunian year, since its discovery in 1846.1 It's so far away that it cannot be seen with the naked eye. It's so far away that it takes light—faster than which nothing can go—more than five hours to get from Neptune to Earth.

  When Voyager 2 raced through the Neptune system in 1989, its cameras, spectrometers, particle and field detectors, and other instruments were feverishly examining the planet, its moons, and its rings. The planet itself, like its cousins Jupiter, Saturn, and Uranus, is a giant. Every planet is an Earthlike world at heart—but the four gas giants wear elaborate, cumbersome disguises. Jupiter and Saturn are great gas
worlds with relatively small rocky and icy cores. But Uranus and Neptune are fundamentally rock and ice worlds swaddled in dense atmospheres that hide them from view.

  Neptune is four times bigger than the Earth. When we look down on its cool, austere blueness, again we are seeing only atmosphere and clouds—no solid surface. Again, the atmosphere is made mainly of hydrogen and helium, with a little methane and traces of other hydrocarbons. There may also be some nitrogen. The bright clouds, which seem to be methane crystals, float above thick, deeper clouds of unknown composition. From the motion of the clouds we discovered fierce winds, approaching the local speed of sound. A Great Dark Spot was found, curiously at almost the same latitude as the Great Red Spot on Jupiter. The azure color seems appropriate for a planet named after the god of the sea.

  Surrounding this dimly lit, chilly, stormy, remote world is—here also—a system of rings, each composed of innumerable orbiting objects ranging in size from the fine particles in cigarette smoke to small trucks. Like the rings of the other Jovian planets, those of Neptune seem to be evanescent—it is calculated that gravity and solar radiation will disrupt them in much less than the age of the Solar System. If they are destroyed quickly, we must see them only because they were made recently. But how can rings be made?

  The biggest moon in the Neptune system is called Triton.2 Nearly six of our days are required for it to orbit Neptune, which—alone among big moons in the Solar System—it does in the opposite direction to which its planet spins (clockwise if we say Neptune rotates counterclockwise). Triton has a nitrogen-rich atmosphere, somewhat similar to Titan's; but, because the air and haze are much thinner, we can see its surface. The landscapes are varied and splendid. This is a world of ices—nitrogen ice, methane ice, probably underlain by more familiar water ice and rock. There are impact basins, which seem to have been flooded with liquid before refreezing (so there once were lakes on Triton); impact craters; long crisscrossing valleys; vast plains covered by freshly fallen nitrogen snow; puckered terrain that resembles the skin of a cantaloupe; and more or less parallel, long, dark streaks that seem to have been blown by the wind and then deposited on the icy surface despite how sparse Triton's atmosphere is (about 1/10,000 the thickness of the Earth's).

  All the craters on Triton are pristine—as if stamped out by some vast milling device. There are no slumped walls or muted relief. Even with the periodic falling and evaporation of snow, it seems that nothing has eroded the surface of Triton in billions of years. So the craters that were gouged out during the formation of Triton must have all been filled in and covered over by some early global resurfacing event. Triton orbits Neptune in the opposite direction to Neptune's rotation—unlike the situation with the Earth and its moon, and with most of the large moons in the Solar System. If Triton had formed out of the same spinning disk that made Neptune, it ought to be going around Neptune in the same direction that Neptune rotates. So Triton was not made from the original local nebula around Neptune, but arose somewhere else—perhaps far beyond Pluto—and was by chance gravitationally captured when it passed too close to Neptune. This event should have raised enormous solid-body tides in Triton, melting the surface and sweeping away all the past topography.

  In some places the surface is as bright and white as freshly fallen Antarctic snows (and may offer a skiing experience unrivaled in all the Solar System). Elsewhere there's a tint, ranging from pink to brown. One possible explanation: Freshly fallen snows of nitrogen, methane, and other hydrocarbons are irradiated by solar ultraviolet light and by electrons trapped in the magnetic field of Neptune, through which Triton plows. We know that such irradiation will convert the snows (like the corresponding gases) to complex, dark, reddish organic sediments, ice tholins—nothing alive, but here too composed of some of the molecules implicated in the origin of life on Earth four billion years ago.

  In local winter, layers of ice and snow build up on the surface. (Our winters, mercifully, are only 4 percent as long.) Through the spring, they are slowly transformed, more and more reddish organic molecules accumulating. By summertime, the ice and snow have evaporated; the gases so released migrate halfway across the planet to the winter hemisphere and there cover the surface with ice and snow again. But the reddish organic molecules do not vaporize and are not transported—a lag deposit, they are next winter covered over by new snows, which are in turn irradiated, and by the following summer the accumulation is thicker. As time goes on, substantial amounts of organic matter are built up on the surface of Triton, which may account for its delicate color markings.

  The streaks begin in small, dark source regions, perhaps when the warmth of spring and summer heats subsurface volatile snows. As they vaporize, gas comes gushing out as in a geyser, blowing off less-volatile surface snows and dark organics. Prevailing low-speed winds carry away the dark organics, which slowly sediment out of the thin air, are deposited on the ground, and generate the appearance of the streaks. This, at least, is one reconstruction of recent Tritonian history.

  Triton may have large, seasonal polar caps of smooth nitrogen ice underlying layers of dark organic materials. Nitrogen snows seem recently to have fallen at the equator. Snowfalls, geysers, windblown organic dust, and high-altitude hazes were entirely unexpected on a world with so thin an atmosphere.

  Why is the air so thin? Because Triton is so far from the Sun. Were you somehow to pick this world up and move it into orbit around Saturn, the nitrogen and methane ices would quickly evaporate, a much denser atmosphere of gaseous nitrogen and methane would form, and radiation would generate an opaque tholin haze. It would become a world very like Titan. Conversely, if you moved Titan into orbit about Neptune, almost all its atmosphere would freeze out as snows and ices, the tholin would fall out and not be replaced, the air would clear, and the surface would become visible in ordinary light. It would become a world very like Triton.

  These two worlds are not identical. The interior of Titan seems to contain much more ice than that of Triton, and much less rock. Titan's diameter is almost twice that of Triton. Still, if placed at the same distance from the Sun they would look like sisters. Alan Stern of the Southwest Research Institute suggests that they are two members of a vast collection of small worlds rich in nitrogen and methane that formed in the early Solar System. Pluto, yet to be visited by a spacecraft, appears to be another member of this group. Many more may await discovery beyond Pluto. The thin atmospheres and icy surfaces of all these worlds are being irradiated—by cosmic rays, if nothing else and nitrogen—rich organic compounds are being formed. It looks as if the stuff of life is sitting not just on Titan, but throughout the cold, dimly lit outer reaches of our planetary system.

  Another class of small objects has recently been discovered, whose orbits take them—at least part of the time—beyond Neptune and Pluto. Sometimes called minor planets or asteroids, they are more likely to be inactive comets (with no tails, of course; so far from the Sun, their ices cannot readily vaporize). But they are much bigger than the run-of-the-mill comets we know. They may be the vanguard of a vast array of small worlds that extends from the orbit of Pluto halfway to the nearest star. The innermost province of the Oort Comet Cloud, of which these new objects may be members, is called the Kuiper Belt, after my mentor Gerard Kuiper, who first suggested that it should exist. Short-period comets—like Halley's—arise in the Kuiper Belt, respond to gravitational tugs, sweep into the inner part of the Solar System, grow their tails, and grace our skies.

  Back in the late nineteenth century, these building blocks of worlds—then mere hypotheses—were called "planetesimals." The flavor of the word is, I suppose, something like that of "infinitesimals": You need an infinite number of them to make anything. It's not quite that extreme with planetesimals, although a very large number of them would be required to make a planet. For example, trillions of bodies each a kilometer in size would be needed to coalesce to make a planet with the mass of the Earth. Once there were much larger numbers of worldlets in the plane
tary part of the Solar System. Most of them are now gone—ejected into interstellar space, fallen into the Sun, or sacrificed in the great enterprise of building moons and planets. But out beyond Neptune and Pluto the discards, the leftovers that were never aggregated into worlds, may be waiting—a few largish ones in the 100-kilometer range, and stupefying numbers of kilometer-sized and smaller bodies peppering the outer Solar System all the way out to the Oort Cloud.

  In this sense there are planets beyond Neptune and Pluto—but they are not nearly as big as the Jovian planets, or even Pluto. Larger worlds may, for all we know, also be hiding in the dark beyond Pluto, worlds that can properly be called planets. The farther away they are, the less likely it is that we would have detected them. They cannot lie just beyond Neptune, though; their gravitational tugs would have perceptibly altered the orbits of Neptune and Pluto, and the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft.

  The newly discovered cometary bodies (with names like 1992QB and 1993FW) are not planets in this sense. If our detection threshold has just encompassed them, many more of them probably remain to be discovered in the outer Solar System—so far away that they're hard to see from Earth, so distant that it's a long journey to get to them. But small, quick ships to Pluto and beyond are within our ability. It would make good sense to dispatch one by Pluto and its moon Charon, and then, if we can, to make a close pass by one of the denizens of the Kuiper Comet Belt.

  The rocky Earthlike cores of Uranus and Neptune seem to have accreted first, and then gravitationally attracted massive amounts of hydrogen and helium gas from the ancient nebula out of which the planets formed. Originally, they lived in a hailstorm. Their gravities were just sufficient to eject icy worldlets, when they came too close, far out beyond the realm of the planets, to populate the Oort Comet Cloud. Jupiter and Saturn became gas giants by the same process. But their gravities were too strong to populate the Oort Cloud: Ice worlds that came close to them were gravitationally pitched out of the Solar System entirely—destined to wander forever in the great dark between the stars.

 

‹ Prev