Silent Spring

Home > Nonfiction > Silent Spring > Page 27
Silent Spring Page 27

by Rachel Carson


  With insects that infest crops the story is the same.

  To the list of about a dozen agricultural insects showing resistance to the inorganic chemicals of an earlier era there is now added a host of others resistant to DDT, BHC, lindane, toxaphene, dieldrin, aldrin, and even to the phosphates from which so much was hoped. The total number of resistant species among crop-destroying insects had reached 65 in 1960 .

  The first cases of DDT resistance among agricultural insects appeared in the United States in 1951, about six years after its first use. Perhaps the most troublesome situation concerns the codling moth, which is now resistant to DDT in practically all of the world's apple-growing regions. Resistance in cabbage insects is creating another serious problem. Potato insects are escaping chemical control in many sections of the United States. Six species of cotton insects, along with an assortment of thrips, fruit moths, leaf hoppers, caterpillars, mites, aphids, wireworms, and many others now are able to ignore the farmer's assault with chemical sprays.

  The chemical industry is perhaps understandably loath to face up to the unpleasant fact of resistance. Even in 1959, with more than 100 major insect species showing definite resistance to chemicals, one of the leading journals in the field of agricultural chemistry spoke of "real or imagined" insect resistance. Yet hopefully as the industry may turn its face the other way, the problem simply does not go away, and it presents some unpleasant economic facts. One is that the cost of insect control by chemicals is increasing steadily. It is no longer possible to stockpile materials well in advance; what today may be the most promising of insecticidal chemicals may be the dismal failure of tomorrow. The very substantial financial investment involved in backing and launching an insecticide may be swept away as the insects prove once more that the effective approach to nature is not through brute force. And however rapidly technology may invent new uses for insecticides and new ways of applying them, it is likely to find the insects keeping a lap ahead.

  Darwin himself could scarcely have found a better example of the operation of natural selection than is provided by the way the mechanism of resistance operates. Out of an original population, the members of which vary greatly in qualities of structure, behavior, or physiology, it is the "tough" insects that survive chemical attack. Spraying kills off the weaklings. The only survivors are insects that have some inherent quality that allows them to escape harm. These are the parents of the new generation, which, by simple inheritance, possesses all the qualities of "toughness" inherent in its forebears. Inevitably it follows that intensive spraying with powerful chemicals only makes worse the problem it is designed to solve. After a few generations, instead of a mixed population of strong and weak insects, there results a population consisting entirely of tough, resistant strains.

  The means by which insects resist chemicals probably vary and as yet are not thoroughly understood. Some of the insects that defy chemical control are thought to be aided by a structural advantage, but there seems to be little actual proof of this. That immunity exists in some strains is clear, however, from observations like those of Dr. Briejèr, who reports watching flies at the Pest Control Institute at Springforbi, Denmark, "disporting themselves in DDT as much at home as primitive sorcerers cavorting over red-hot coals."

  Similar reports come from other parts of the world. In Malaya, at Kuala Lumpur, mosquitoes at first reacted to DDT by leaving the treated interiors. As resistance developed, however, they could be found at rest on surfaces where the deposit of DDT beneath them was clearly visible by torchlight. And in an army camp in southern Taiwan samples of resistant bedbugs were found actually carrying a deposit of DDT powder on their bodies. When these bedbugs were experimentally placed in cloth impregnated with DDT, they lived for as long as a month; they proceeded to lay their eggs; and the resulting young grew and thrived.

  Nevertheless, the quality of resistance does not necessarily depend on physical structure. DDT-resistant flies possess an enzyme that allows them to detoxify the insecticide to the less toxic chemical DDE. This enzyme occurs only in flies that possess a genetic factor for DDT resistance. This factor is, of course, hereditary. How flies and other insects detoxify the organic phosphorus chemicals is less clearly understood.

  Some behavioral habit may also place the insect out of reach of chemicals. Many workers have noticed the tendency of resistant flies to rest more on untreated horizontal surfaces than on treated walls. Resistant houseflies may have the stable-fly habit of sitting still in one place, thus greatly reducing the frequency of their contact with residues of poison. Some malaria mosquitoes have a habit that so reduces their exposure to DDT as to make them virtually immune. Irritated by the spray, they leave the huts and survive outside.

  Ordinarily resistance takes two or three years to develop, although occasionally it will do so in only one season, or even less. At the other extreme it may take as long as six years. The number of generations produced by an insect population in a year is important, and this varies with species and climate. Flies in Canada, for example, have been slower to develop resistance than those in southern United States, where long hot summers favor a rapid rate of reproduction.

  The hopeful question is sometimes asked, "If insects can become resistant to chemicals, could human beings do the same thing?" Theoretically they could; but since this would take hundreds or even thousands of years, the comfort to those living now is slight. Resistance is not something that develops in an individual. If he possesses at birth some qualities that make him less susceptible than others to poisons he is more likely to survive and produce children. Resistance, therefore, is something that develops in a population after time measured in several or many generations. Human populations reproduce at the rate of roughly three generations per century, but new insect generations arise in a matter of days or weeks.

  "It is more sensible in some cases to rake a small amount of damage in preference to having none for a time but paying for it in the long run by losing the very means of fighting," is the advice given in Holland by Dr. Briejèr in his capacity as director of the Plant Protection Service. "Practical advice should be 'Spray as little as you possibly can' rather than 'Spray to the limit of your capacity.'...Pressure on the pest population should always be as slight as possible."

  Unfortunately, such vision has not prevailed in the corresponding agricultural services of the United States. The Department of Agriculture's Yearbook for 1952, devoted entirely to insects, recognizes the fact that insects become resistant but says, "More applications or greater quantities of the insecticides are needed then for adequate control." The Department does not say what will happen when the only chemicals left untried are those that render the earth not only insectless but lifeless. But in 1959, only seven years after this advice was given, a Connecticut entomologist was quoted in the Journal of Agricultural and Food Chemistry to the effect that on at least one or two insect pests the last available new material was then being used.

  Dr. Briejèr says:

  It is more than clear that we are traveling a dangerous road. ... We are going to have to do some very energetic research on other control measures, measures that will have to be biological, not chemical. Our aim should be to guide natural processes as cautiously as possible in the desired direction rather than to use brute force....

  We need a more high-minded orientation and a deeper insight, which I miss in many researchers. Life is a miracle beyond our comprehension, and we should reverence it even where we have to struggle against it.... The resort to weapons such as insecticides to control it is a proof of insufficient knowledge and of an incapacity so to guide the processes of nature that brute force becomes unnecessary. Humbleness is in order; there is no excuse for scientific conceit here.

  17. The Other Road

  WE STAND NOW where two roads diverge. But unlike the roads in Robert Frost's familiar poem, they are not equally fair. The road we have long been traveling is deceptively easy, a smooth superhighway on which we progress with grea
t speed, but at its end lies disaster. The other fork of the road—the one "less traveled by"—offers our last, our only chance to reach a destination that assures the preservation of our earth.

  The choice, after all, is ours to make. If, having endured much, we have at last asserted our "right to know," and if, knowing, we have concluded that we are being asked to take senseless and frightening risks, then we should no longer accept the counsel of those who tell us that we must fill our world with poisonous chemicals; we should look about and see what other course is open to us.

  A truly extraordinary variety of alternatives to the chemical control of insects is available. Some are already in use and have achieved brilliant success. Others are in the stage of laboratory testing. Still others are little more than ideas in the minds of imaginative scientists, waiting for the opportunity to put them to the test. All have this in common: they are biological solutions, based on understanding of the living organisms they seek to control, and of the whole fabric of life to which these organisms belong. Specialists representing various areas of the vast field of biology are contributing—entomologists, pathologists, geneticists, physiologists, biochemists, ecologists—all pouring their knowledge and their creative inspirations into the formation of a new science of biotic controls.

  "Any science may be likened to a river," says a Johns Hopkins biologist, Professor Carl P. Swanson. "It has its obscure and unpretentious beginning; its quiet stretches as well as its rapids; its periods of drought as well as of fullness. It gathers momentum with the work of many investigators and as it is fed by other streams of thought; it is deepened and broadened by the concepts and generalizations that are gradually evolved."

  So it is with the science of biological control in its modern sense. In America it had its obscure beginnings a century ago with the first attempts to introduce natural enemies of insects that were proving troublesome to farmers, an effort that sometimes moved slowly or not at all, but now and again gathered speed and momentum under the impetus of an outstanding success. It had its period of drought when workers in applied entomology, dazzled by the spectacular new insecticides of the 1940's, turned their backs on all biological methods and set foot on "the treadmill of chemical control." But the goal of an insect-free world continued to recede. Now at last, as it has become apparent that the heedless and unrestrained use of chemicals is a greater menace to ourselves than to the targets, the river which is the science of biotic control flows again, fed by new streams of thought.

  Some of the most fascinating of the new methods are those that seek to turn the strength of a species against itself—to use the drive of an insect's life forces to destroy it. The most spectacular of these approaches is the "male sterilization" technique developed by the chief of the United States Department of Agriculture's Entomology Research Branch, Dr. Edward Knipling, and his associates.

  About a quarter of a century ago Dr. Knipling startled his colleagues by proposing a unique method of insect control. If it were possible to sterilize and release large numbers of insects, he theorized, the sterilized males would, under certain conditions, compete with the normal wild males so successfully that, after repeated releases, only infertile eggs would be produced and the population would die out.

  The proposal was met with bureaucratic inertia and with skepticism from scientists, but the idea persisted in Dr. Knipling's mind. One major problem remained to be solved before it could be put to the test—a practical method of insect sterilization had to be found. Academically, the fact that insects could be sterilized by exposure to X-ray had been known since 1916, when an entomologist by the name of G. A. Runner reported such sterilization of cigarette beetles. Hermann Muller's pioneering work on the production of mutations by X-ray opened up vast new areas of thought in the late 1920's, and by the middle of the century various workers had reported the sterilization by X-rays or gamma rays of at least a dozen species of insects.

  But these were laboratory experiments, still a long way from practical application. About 1950, Dr. Knipling launched a serious effort to turn insect sterilization into a weapon that would wipe out a major insect enemy of livestock in the South, the screw-worm fly. The females of this species lay their eggs in any open wound of a warm-blooded animal. The hatching larvae are parasitic, feeding on the flesh of the host. A full-grown steer may succumb to a heavy infestation in 10 days, and livestock losses in the United States have been estimated at $40,000,000 a year. The toll of wildlife is harder to measure, but it must be great. Scarcity of deer in some areas of Texas is attributed to the screw-worm. This is a tropical or subtropical insect, inhabiting South and Central America and Mexico, and in the United States normally restricted to the Southwest. About 1933, however, it was accidentally introduced into Florida, where the climate allowed it to survive over winter and to establish populations. It even pushed into southern Alabama and Georgia, and soon the livestock industry of the southeastern states was faced with annual losses running to $20,000,000.

  A vast amount of information on the biology of the screw-worm had been accumulated over the years by Agriculture Department scientists in Texas. By 1954, after some preliminary field trials on Florida islands, Dr. Knipling was ready for a full-scale test of his theory. For this, by arrangement with the Dutch Government, he went to the island of Curaçao in the Caribbean, cut off from the mainland by at least 50 miles of sea.

  Beginning in August 1954, screw-worms reared and sterilized in an Agriculture Department laboratory in Florida were flown to Curaçao and released from airplanes at the rate of about 400 per square mile per week. Almost at once the number of egg masses deposited on experimental goats began to decrease, as did their fertility. Only seven weeks after the releases were started, all eggs were infertile. Soon it was impossible to find a single egg mass, sterile or otherwise. The screw-worm had indeed been eradicated on Curaçao.

  The resounding success of the Curaçao experiment whetted the appetites of Florida livestock raisers for a similar feat that would relieve them of the scourge of screw-worms. Although the difficulties here were relatively enormous—an area 300 times as large as the small Caribbean island—in 1957 the United States Department of Agriculture and the State of Florida joined in providing funds for an eradication effort. The project involved the weekly production of about 50 million screw-worms at a specially constructed "fly factory," the use of 20 light airplanes to fly pre-arranged flight patterns, five to six hours daily, each plane carrying a thousand paper cartons, each carton containing 200 to 400 irradiated flies.

  The cold winter of 1957–58, when freezing temperatures gripped northern Florida, gave an unexpected opportunity to start the program while the screw-worm populations were reduced and confined to a small area. By the time the program was considered complete at the end of 17 months, 3% billion artificially reared, sterilized flies had been released over Florida and sections of Georgia and Alabama. The last-known animal wound infestation that could be attributed to screw-worms occurred in February 1959. In the next few weeks several adults were taken in traps. Thereafter no trace of the screw-worm could be discovered. Its extinction in the Southeast had been accomplished—a triumphant demonstration of the worth of scientific creativity, aided by thorough basic research, persistence, and determination.

  Now a quarantine barrier in Mississippi seeks to prevent the re-entrance of the screw-worm from the Southwest, where it is firmly entrenched. Eradication there would be a formidable undertaking, considering the vast areas involved and the probability of re-invasion from Mexico. Nevertheless, the stakes are high and the thinking in the Department seems to be that some sort of program, designed at least to hold the screw-worm populations at very low levels, may soon be attempted in Texas and other infested areas of the Southwest.

  The brilliant success of the screw-worm campaign has stimulated tremendous interest in applying the same methods to other insects. Not all, of course, are suitable subjects for this technique, much depending on details of the life history, pop
ulation density, and reactions to radiation.

  Experiments have been undertaken by the British in the hope that the method could be used against the tsetse fly in Rhodesia. This insect infests about a third of Africa, posing a menace to human health and preventing the keeping of livestock in an area of some 4½ million square miles of wooded grasslands. The habits of the tsetse differ considerably from those of the screw-worm fly, and although it can be sterilized by radiation some technical difficulties remain to be worked out before the method can be applied.

  The British have already tested a large number of other species for susceptibility to radiation. United States scientists have had some encouraging early results with the melon fly and the oriental and Mediterranean fruit flies in laboratory tests in Hawaii and field tests on the remote island of Rota. The corn borer and the sugarcane borer are also being tested. There are possibilities, too, that insects of medical importance might be controlled by sterilization. A Chilean scientist has pointed out that malaria-carrying mosquitoes persist in his country in spite of insecticide treatment; the release of sterile males might then provide the final blow needed to eliminate this population.

  The obvious difficulties of sterilizing by radiation have led to search for an easier method of accomplishing similar results, and there is now a strongly running tide of interest in chemical sterilants.

  Scientists at the Department of Agriculture laboratory in Orlando, Florida, are now sterilizing the housefly in laboratory experiments and even in some field trials, using chemicals incorporated in suitable foods. In a test on an island in the Florida Keys in 1961, a population of flies was nearly wiped out within a period of only five weeks. Repopulation of course followed from nearby islands, but as a pilot project the test was successful. The Department's excitement about the promise of this method is easily understood. In the first place, as we have seen, the housefly has now become virtually uncontrollable by insecticides. A completely new method of control is undoubtedly needed. One of the problems of sterilization by radiation is that this requires not only artificial rearing but the release of sterile males in larger number than are present in the wild population. This could be done with the screw-worm, which is actually not an abundant insect. With the housefly, however, more than doubling the population through releases could be highly objectionable, even though the increase would be only temporary. A chemical sterilant, on the other hand, could be combined with a bait substance and introduced into the natural environment of the fly; insects feeding on it would become sterile and in the course of time the sterile flies would predominate and the insects would breed themselves out of existence.

 

‹ Prev