Alan Turing: The Enigma The Centenary Edition

Home > Science > Alan Turing: The Enigma The Centenary Edition > Page 49
Alan Turing: The Enigma The Centenary Edition Page 49

by Andrew Hodges


  In the general election of July 1945 he voted for the Labour party. ‘Time for a change’, he said vaguely later. It was hardly remarkable for one who belonged to a generation that had been champing at the bit while the ‘broad-bottomed’, as G.H. Hardy used to call them, ruled the roost. The conflicts of ‘the small back room’ were reflected in the hustings. The war had obliged the planning and state control that had been urged upon deaf ears in the 1930s, and the Labour party offered to preserve what Churchill proposed to dismantle – as Lloyd George had done in 1919. But Alan Turing was no Labour party stalwart, no more than he had been a ‘political’ person in the 1930s. The Abdication had roused him more than the Beveridge Report. As an admirer of Bernard Shaw, a reader of the New Statesman, and a wartime scientist up against the blinkered inertia of the old regime, he would approve of reform. But organisation and reorganisation did not really interest him.

  His attitudes still had more in common with the democratic individualism of J.S. Mill than with the planners of 1945. But he did not share Mill’s interest in commercial competition. Indeed, he did not know anything about it. His life had been in interlocking schools, universities and government service. In his undergraduate days business had been a holiday, and the small Beuttell and Morcom firms were themselves exceptions to the twentieth century trend, representing a spirit which had largely died with Gladstone. And during the war, the contractors for equipment had been working on carte blanche government contracts in which ordinary considerations of profit had no application.

  Money, commerce, and competition had played no obvious part in the central developments in which Alan Turing was enmeshed, developments which had allowed him in many ways to remain the idealistic undergraduate. His retention of a primitive liberalism, his ‘championing of the underdog’ as it was seen at Hanslope, like his obsession with the absolutely basic, had the flavour of more Utopian thinkers than Mill. Tolstoy was a figure that he brought to one person’s mind,31 and Claude Shannon had perceived him as like Nietzsche, ‘beyond Good and Evil’. But perhaps closer in spirit than either of these, and certainly closer to home, was another late nineteenth-century figure who had lurked more in the back room of political consciousness. That awkward figure Edward Carpenter, while sharing much in common with each of these European thinkers, had criticised Tolstoy for a restrictive attitude to sex and Nietzsche for overbearing arrogance. And in Carpenter, at a time when socialism was supposed to be about better organisation, lay the example of an English socialist not interested in organisation but in science, sex and simplicity – and with bringing these into mutual harmony. Born in 1844, he had written words32 during the First World War that already fitted a small boy at St Leonards-on-Sea, and which Alan Turing had continued to act out quite regardless of the opinions of more respectable persons:

  I used to go and sit on the beach at Brighton and dream, and now I sit on the shore of human life and dream practically the same dreams. I remember about the time that I mention – or it may have been a trifle later – coming to the distinct conclusion that there were only two things really worth living for – the glory and beauty of Nature, and the glory and beauty of human love and friendship. And to-day I still feel the same. What else indeed is there? All the nonsense about riches, fame, distinction, ease, luxury and so forth – how little does it amount to! It really is not worth wasting time over. These things are so obviously secondhand affairs, useful only and in so far as they may lead to the first two, and short of their doing that liable to become odious and harmful. To become united and in line with the beauty and vitality of Nature (but, Lord help us! we are far enough off from that at present), and to become united with those we love – what other ultimate object in life is there? Surely all these other things, these games and examinations, these churches and chapels, these district councils and money markets, these top-hats and telephones and even the general necessity of earning one’s living – if they are not ultimately for that, what are they for?

  Behind all the foibles and funny stories, and behind all the fuss made about his appearance and manners, lay the fact that as a boy he had never been able to understand how anyone could see life in any other way than this, and that at thirty-three only the war against Nazi Germany had dented that clinging to first principles.

  There was a closer parallel than this, for Carpenter had been a Cambridge mathematician, and one fascinated by the same theme of mind in a deterministic world. He had the same upper-middle-class background, a parallel interest in biological growth. And he had abandoned Christian belief, while identifying himself as a homosexual. His book Homogenic Love, appearing in 1895, had been the first English work to place homosexual desire within a contemporary psychological and social context (rather than in that of ancient Greece), and to do so as part of a wholesale attack on ‘fixed moral codes’ – very close to the ‘general rules’ that Keynes, much more privately, rejected. And although not entirely relinquishing the idea that homosexuals had some special part to play, an idea not found in Alan Turing’s book, the burden of his argument was that ‘homogenic love’ should be part of the general give and take, the creative anarchy of life – neither good nor evil in itself, but as sociable, as selfish, as messy as anything else.

  By 1945 this could be taken as Alan Turing’s view, for if sometimes he had seen his sexuality as a cross to bear, it was more and more a fact of life, one as much at the heart of what he was as that equally unasked-for, equally amoral, love of natural science. But in defending this view in 1945 he was taking a line that in fifty years hardly anyone had dared say in public more clearly than Carpenter. Not all the modernity of the war had changed this fact, and since his consciousness of sex had become clearer in 1933, there had been little but ‘semi-platonic sentimentality’ allowed.* Others, of course, were more content than he to remain the deceivers of men. And they were wise in worldly terms, for it remained a taboo more dangerous than the Soviet heresy. Untouched by electronic revolutions, unmentioned in the debates of 1945, it was not a subject for political people. But Alan Turing was not one of those.

  The early Labour Party had been open to Carpenter’s ideals of a more simple life, and even of a New Morality. His naively lucid questioning of what life was for, and of what socialism was going to make it, had played a part in its more innocent days. Even when in power, in 1924, the first Labour cabinet had sent him a letter of thanks on his eightieth birthday. But the thirties had put paid to that. In 1937 George Orwell had ridiculed what remained of such impractical, distracting naiveté in The Road to Wigan Pier:

  One sometimes gets the impression that the mere words ‘Socialism’ and ‘Communism’ draw towards them with magnetic force every fruit-juice drinker, nudist, sandal-wearer, sex-maniac, Quaker, ‘Nature Cure’ quack, pacifist and feminist in England.

  In 1944 it was E.M. Forster, a liberal rather than a socialist, who remembered Carpenter’s centenary, and his cautious eulogy33 was that of a man forgotten. Both he and Lowes Dickinson had been influenced by Carpenter’s ideas – the happy pastoral ending in the ‘greenwood’ of the still unpublished Maurice was drawn from Carpenter’s rather scandalous life near Sheffield with a younger working-class man – and the more democratic side of King’s College, its lack of ‘stuffiness’ as well as its comparative openness to sexual dissent, owed something to his legacy.

  The Labour party still had Carpenter’s song England Arise! as well as The Red Flag, but the shift of support to it in 1945 reflected the success of new men and modern methods rather than the sentiments of either anthem. There was now a political consciousness of the importance of science (though hardly in the way Carpenter would have wanted), but not of sex or simplicity. In 1937 – just as the first large calculators began the arithmetical relay race – George Orwell had been as repelled by the creed of ‘mechanization, rationalization, modernization’, as by the vegetarians and simple-lifers. But the war had brought it to power, and for good reason: Britain would have succumbed without it.

&n
bsp; Orwell escaped from the dichotomy by appealing to an England of ‘ordinary, decent’ people. Alan Turing might have liked to do the same, but he was now hopelessly saddled with a mind full of extraordinary, indecent contradictions. It contained the greatest development of ‘mechanization, rationalization, modernization’ of the war, and another which was the greatest ever conceived, while still longing for ‘the commonest in nature’, and while still being precisely what Orwell meant by a ‘sex maniac’. He could not avoid these things, and having surrendered half of his mind to the government, was not free to try. He had done something, in a way that Orwell had not, and had passed the point of no return.

  The paradox was not his alone, although his life took it to a peculiar intensity. The war had dealt a sharp blow to ‘fixed moral codes’, with social changes accelerated, old authorities questioned and new talents employed. Everyone had been made conscious of the defects of the old system, and more insidiously, of the fact that systems could be changed when survival made it necessary. To the dismay of conservative forces, British society had undergone a second and more thorough shaking up, this time with knowledge and ideas communicated to those excluded from participation in peace – ordinary men, the young, and even women. Bletchley Park had seen this happen as much as anywhere else. It had not been all a story of ‘men of the Professor type’; there had been boys of eighteen, ‘female mathematicians’, and Post Office engineers who had risen from the bottom of the ladder, all playing crucial parts.

  In other ways, too, the consciousness of being a community, sharing a very limited common wealth, had brought people closer to the ‘least waste of energy’ of Alan Turing, spartan but not joyless. Even at a place such as Hanslope, enmeshed in the technical machinations of the secret service, the pleasures of Mess Nights, mountain-walking holidays, mushroom-cooking, games and self-education had taken on that enhanced value that Carpenter had rather laboriously tried to explain as ‘the Simplification of Life’.

  There was a new spirit, and yet it was a spirit within a machine. A much enlarged state apparatus, and the more centralised economy, were the legacy of the great battle for intelligence and coordination. This time it would not be undone. And it was the machine, rather than glimpses of workers’ control, that inspired Ernest Bevin:34 ‘Calculation of profits and all the other things that have cluttered up progress in the past has to go and the great genius of our managers and technicians is being given full play. …’ It was true. Unhindered by wasteful competition and by the false economies of public parsimony, the Government Code and Cypher School and the Post Office had proved capable of managing fantastic feats. Now the development of the electronic computer was being taken over by the National Physical Laboratory for the public good. It deserved two cheers, as Forster would say, two cheers for managerial socialism. But management and techniques had not been the whole story, important as they might be. There had been something else, something now fading away while they waited for the other war to finish.

  With Hitler out of the way, the games of Red and White could resume. Attlee replaced Churchill at the Potsdam conference when the results of the British election were known. Alan Turing went to Germany at the same time, in a party made up of five British and six American experts to report on German progress in communications. Flowers was one of the other British members. They left on 15 July, and arrived in Paris on a fine hot day. Here they were to meet the Americans, but the military headquarters had no idea who they were, so they took the day off. Late in the afternoon the telegrams from London came through, and they were assigned to the military transit camp, a hotel near the Madeleine. The same thing happened next day at Frankfurt when they reported to the American army headquarters in the I.G. Farben building. It was Patton’s area, and they were warned not to continue into Bavaria without permission from his staff, or they would be arrested by the military police. After another day they set off in a jeep along the pot-holed roads, going ‘hell for leather’ over 200 miles to make their destination before nightfall. They were stopped thirty-seven times by the MP’s because, being civilians, they had no tin hats.

  So Alan Turing re-entered the ruined land of Gauss and Hilbert under watchful American eyes and in a military jeep. The party stayed at a communications laboratory at Ebermannstadt, near Bayreuth, which they had to reach by trudging up a thousand feet of mountain. It had been a hospital, and still bore a red cross on its roof, so they simply slept in the hospital beds. Women from the village came and did their washing, in return for a fragment of soap. Only he and Flowers had any cryptological interest, and the other members of the party did not (as far as they knew) know that they had. One of the captured German scientists proudly produced a machine of the Fish type, and explained how many billions of steps it would go through without repeating the key. Alan and Flowers just blinked and said, ‘Really!’ when he went on to tell them that none the less their mathematicians had reckoned it impregnable only for two years, and that then there would be a chance of it being broken.

  While they were there, the mushroom cloud fulfilled the wilder prophecies of 1939. The quantum mechanics that Hardy had so recently pronounced gloriously useless, had come of age. It was the outward sign of the new men’s work. Maurice Pryce had played an early part in the British research, and the final touch had been added by von Neumann, calculating the height at which it should explode to effect the maximum destruction. The clouds rolled over the second enemy, that would-be latecomer to old-fashioned empire, and warned a potential new one. The Americans had solved the final problem of the war. Yet without the sequence of events that had kept the Enigma on the Allied side in 1943, the war of 1945 might have been very different, with the first atomic weapons reserved for the concrete pens of raiding U-boats.

  The great secret was out – or rather, it was known that there was a secret, which made it so very different from the other one. American soldiers came up to the Ebermannstadt station with the news, which did not surprise Alan. He had known of the possibility before the war, and was good at picking up straws in the wind. After his return from America, he had posed both to Jack Good and to Shaun Wylie a question about a chain reaction, expressed in terms of barrels of gunpowder. He had also spoken of a possible ‘U-bomb’ at Hanslope lunchtimes. He gave a talk on the basic physical principle to the others at Ebermannstadt.

  He remained in Germany until about the middle of August, and then returned to write his report on the visit. After six years, the war was officially finished. He had given his help in breaking the slave states, and in giving victory to the Yankees. Perhaps, less directly, his work had played a part in deciding the new boundaries of Animal Farm. But in 1945 few were dwelling upon the state of the eastern menagerie, although at Bletchley Park the new men had left the means with which to resume the politics of the 1920s.

  No longer responsible for the world, they could get things right at home. In this respect Alan Turing was as fortunate as anyone. Even if his work had often been wasted, he had made the most of the war for himself, and emerged ready to contribute to the peace. The British had avoided defeat, and owed America for that. The ending of Lend-Lease was only the beginning of new problems. The power of British capital had shrunk, and its empire was to melt away. Yet arising in the mind were seeds of other kinds of growth.

  * Wynn-Williams did make some progress, but this machine was probably the work of Keen and BTM.

  * There was more than one kind of Robinson: a ‘Peter Robinson’ and a ‘Robinson and Cleaver’ after London department stores, and a ‘Heath Robinson’ after the famous cartoonist specialising in elaborate machines to perform absurdly simple tasks.

  * It was from 16 to 22 November 1943.

  * Hence the name Rockex, coined by Travis and inspired by that better-known feature of the Rockefeller Center, the Rockettes.

  * Technically, of course, there was more to it than this. The speech would first be filtered to remove frequencies above 2000 Hz, and to restrict it to a specific range in amplitude
so that it could be described at any point by a number between 0 and 1. Then in fact the encipherment was done by adding a continuous key signal first, and then taking the sample by making the resulting speech-plus-key signal modulate a pulse train. The ‘remaindering’ process would then be performed, chopping down a ‘spike’ by one unit if it exceeded one unit in amplitude.

  * The output of the ‘orthogonal’ circuit would have the characteristics of random noise in the frequency range up to 2000 Hz. It would be deciphered by performing the sampling process (in strict synchrony, of course, with the sender), and a modular subtraction of the identical key. This would yield the samples of the original speech signal, and it was then a standard procedure, requiring only a low-frequency filter, to recover the speech itself.

  † As Alan would stress in explaining the system, this depended crucially upon the use of modular addition. If ordinary unremaindered addition were used, then there would be a correlation between the speech amplitudes and the speech-plus-key amplitudes, and this the cryptanalyst could exploit. Indeed, this is precisely what the ear does in sorting out speech from background noise.

  * Fourier theory very naturally involved the use of the ‘complex numbers’, and so did other aspects of the analysis of electronic circuits. the mathematics that he needed was at the undergraduate level – nothing as advances as the work on the Riemann zeta-function before the war. as with statistical theory he developed at bletchley, this was a very good eample of how quite elemetary nineteenth-century mathematics had applications to the techology of the 1940s that no one had seen, or had tried to seee.

 

‹ Prev