In the Beginning Was Information

Home > Other > In the Beginning Was Information > Page 4
In the Beginning Was Information Page 4

by Werner Gitt


  Co-existence laws: These describe the simultaneous existence of the properties of a system. The formula describing the state changes of an ideal gas, p x v = R x T, is a typical physical co-existence law. The values of the three quantities, pressure p, specific volume v, and absolute temperature T, comprise a complete description of the "state" of an ideal gas. This means that it does not depend on the previous history of the gas, and neither does it depend on the way the present pressure or the present volume has been obtained. Quantities of this type are known as state variables.

  Limit theorems: Limit theorems describe boundaries that cannot be overstepped. In 1927, the German physicist Werner Heisenberg (1901–1976) published such a theorem, namely the so-called uncertainty principle of Heisenberg. According to this principle, it is impossible to determine both the position and the velocity of a particle exactly at a prescribed moment. The product of the two uncertainties is always greater than a specific natural constant, which would have been impossible if the uncertainties were vanishingly small. It follows, for example, that certain measurements can never be absolutely exact. This finding resulted in the collapse of the structure of the then current 19th century deterministic philosophy. The affirmations of the laws of nature are so powerful that viewpoints which were held up to the time they are formulated, may be rapidly discarded.

  Information theorems: In conclusion, we mention that there is a series of theorems which should also be regarded as laws of nature, although they are not of a physical or a chemical nature. These laws will be discussed fully in this book, and all the previously mentioned criteria, N1 to N9, as well as the relevance statements R1 to R6, are also valid in their case.

  2.6 Possible and Impossible Events

  The totality of all imaginable events and processes can be divided into two groups as in Figure 7, namely,

  a) possible events

  b) impossible events.

  Possible events occur under the "supervision" of the laws of nature, but it is in general not possible to describe all of them completely. On the other hand, impossible events could be identified by means of the so-called impossibility theorems.

  Impossible events can be divided into two groups, those which are "fundamentally impossible," and those which are "statistically impossible." Events which contradict, for example, the energy law, are impossible in principle, because this theorem even holds for individual atoms. On the other hand, radioactive decay is a statistical law which is subject to the probability theorems, and cannot be applied to individual atoms, but in all practical cases, the number of atoms is so immense that an "exact" formulation can be used, namely n(t) = n0 x e -k x t. The decay constant k does not depend on temperature, nor on pressure, nor on any possible chemical bond. The half-life T is given by the formula T = ln 2/k; this indicates the time required for any given quantity n0to diminish to half as much, n0/2. Since we are dealing with statistical events, one might expect that less than half the number of atoms or appreciably more then half could have decayed at time T. However, the probability of deviation from this law is so close to zero that we could regard it as statistically impossible. It should be clear that impossible events are neither observable nor recognizable nor measurable. Possible events have in general either been observed, or they are observable. However, there are other possible events about which it can be said that they

  – cannot or cannot yet be observed (e.g., processes taking place in the sun’s interior)

  – are in principle observable, but have never been observed

  Thus far, we have only discussed natural events, but now we can apply these concepts to technological processes (in the widest sense of the word, comprising everything that can be made by human beings). The following categories are now apparent:

  1. possible processes

  1.1 already implemented

  1.2 not yet implemented, but realizable in principle

  2. impossible processes: proposed processes of this kind are fundamentally unrealizable, because they are precluded by laws of nature.

  The distinctions illustrated in Figure 7 follow from a comparison of possible events in nature and in technology, namely:

  a) processes which occur only in nature, but have not (yet) been realized technologically (e.g., photosynthesis, the storage of information on DNA molecules, and life functions);

  b) processes occurring in nature which are also technologically realizable (e.g., industrial synthesis of organic substances);

  c) processes which have been technologically implemented, but do not occur in nature (e.g., synthesis of artificial materials).

  Figure 7: Possible and impossible events in nature and in technological processes.

  Part 2

  Information

  Chapter 3

  Information Is a Fundamental Entity

  3.1 Information: A Fundamental Quantity

  The trail-blazing discoveries about the nature of energy in the 19th century caused the first technological revolution, when manual labor was replaced on a large scale by technological appliances — machines which could convert energy. In the same way, knowledge concerning the nature of information in our time initiated the second technological revolution where mental "labor" is saved through the use of technological appliances — namely, data processing machines. The concept "information" is not only of prime importance for informatics theories and communication techniques, but it is a fundamental quantity in such wide-ranging sciences as cybernetics, linguistics, biology, history, and theology. Many scientists therefore justly regard information as the third fundamental entity alongside matter and energy.

  Claude E. Shannon was the first researcher who tried to define information mathematically. The theory based on his findings had the advantages that different methods of communication could be compared and that their performance could be evaluated. In addition, the introduction of the bit as a unit of information made it possible to describe the storage requirements of information quantitatively. The main disadvantage of Shannon’s definition of information is that the actual contents and impact of messages were not investigated. Shannon’s theory of information, which describes information from a statistical viewpoint only, is discussed fully in the appendix (chapter A1).

  The true nature of information will be discussed in detail in the following chapters, and statements will be made about information and the laws of nature. After a thorough analysis of the information concept, it will be shown that the fundamental theorems can be applied to all technological and biological systems and also to all communication systems, including such diverse forms as the gyrations of bees and the message of the Bible. There is only one prerequisite — namely, that the information must be in coded form.

  Since the concept of information is so complex that it cannot be defined in one statement (see Figure 12), we will proceed as follows: We will formulate various special theorems which will gradually reveal more information about the "nature" of information, until we eventually arrive at a precise definition (compare chapter 5). Any repetitions found in the contents of some theorems (redundance) is intentional, and the possibility of having various different formulations according to theorem N8 (paragraph 2.3), is also employed.

  3.2 Information: A Material or a Mental Quantity?

  We have indicated that Shannon’s definition of information encompasses only a very minor aspect of information. Several authors have repeatedly pointed out this defect, as the following quotations show:

  Karl Steinbuch, a German information scientist [S11]: "The classical theory of information can be compared to the statement that one kilogram of gold has the same value as one kilogram of sand."

  Warren Weaver, an American information scientist [S7]: "Two messages, one of which is heavily loaded with meaning and the other which is pure nonsense, can be exactly equivalent …as regards information."

  Ernst von Weizsäcker [W3]: "The reason for the 'uselessness’ of Shannon’s theory in the different sciences is frankly
that no science can limit itself to its syntactic level."[6]

  The essential aspect of each and every piece of information is its mental content, and not the number of letters used. If one disregards the contents, then Jean Cocteau’s facetious remark is relevant: "The greatest literary work of art is basically nothing but a scrambled alphabet."

  At this stage we want to point out a fundamental fallacy that has already caused many misunderstandings and has led to seriously erroneous conclusions, namely the assumption that information is a material phenomenon. The philosophy of materialism is fundamentally predisposed to relegate information to the material domain, as is apparent from philosophical articles emanating from the former DDR (East Germany) [S8 for example]. Even so, the former East German scientist J. Peil [P2] writes: "Even the biology based on a materialistic philosophy, which discarded all vitalistic and metaphysical components, did not readily accept the reduction of biology to physics…. Information is neither a physical nor a chemical principle like energy and matter, even though the latter are required as carriers."

  Also, according to a frequently quoted statement by the American mathematician Norbert Wiener (1894–1964) information cannot be a physical entity [W5]: "Information is information, neither matter nor energy. Any materialism which disregards this, will not survive one day."

  Werner Strombach, a German information scientist of Dortmund [S12], emphasizes the nonmaterial nature of information by defining it as an "enfolding of order at the level of contemplative cognition."

  The German biologist G. Osche [O3] sketches the unsuitability of Shannon’s theory from a biological viewpoint, and also emphasizes the nonmaterial nature of information: "While matter and energy are the concerns of physics, the description of biological phenomena typically involves information in a functional capacity. In cybernetics, the general information concept quantitatively expresses the information content of a given set of symbols by employing the probability distribution of all possible permutations of the symbols. But the information content of biological systems (genetic information) is concerned with its 'value’ and its 'functional meaning,’ and thus with the semantic aspect of information, with its quality."

  Hans-Joachim Flechtner, a German cyberneticist, referred to the fact that information is of a mental nature, both because of its contents and because of the encoding process. This aspect is, however, frequently underrated [F3]: "When a message is composed, it involves the coding of its mental content, but the message itself is not concerned about whether the contents are important or unimportant, valuable, useful, or meaningless. Only the recipient can evaluate the message after decoding it."

  3.3 Information: Not a Property of Matter!

  It should now be clear that information, being a fundamental entity, cannot be a property of matter, and its origin cannot be explained in terms of material processes. We therefore formulate the following fundamental theorem:

  Theorem 1: The fundamental quantity information is a non-material (mental) entity. It is not a property of matter, so that purely material processes are fundamentally precluded as sources of information.

  Figure 8 illustrates the known fundamental entities — mass, energy, and information. Mass and energy are undoubtedly of a material-physical nature, and for both of them important conservation laws play a significant role in physics and chemistry and in all derived applied sciences. Mass and energy are linked by means of Einstein’s equivalence formula, E = m x c2. In the left part of Figure 8, some of the many chemical and physical properties of matter in all its forms are illustrated, together with the defined units. The right hand part of Figure 8 illustrates nonmaterial properties and quantities, where information, I, belongs.

  Figure 8: The four fundamental entities are mass and energy (material) and information and will (nonmaterial). Mass and energy comprise the fundamental quantities of the physical world; they are linked through the well-known Einstein equation, E = m x c2. On the nonmaterial side we also have two fundamental entities, namely information and volition, which are closely linked. Information can be stored in physical media and used to steer, control, and optimize material processes. All created systems originate through information. A creative source of information is always linked to the volitional intent of a person; this fact demonstrates the nonmaterial nature of information.

  What is the causative factor for the existence of information? What prompts us to write a letter, a postcard, a note of felicitation, a diary, or a comment in a file? The most important prerequisite is our own volition, or that of a supervisor. In analogy to the material side, we now introduce a fourth fundamental entity, namely "will" (volition), W. Information and volition are closely linked, but this relationship cannot be expressed in a formula, because both are of a nonmaterial (mental, intellectual, spiritual) nature. The connecting arrows indicate the following: Information is always based on the will of a sender who issues the information. It is a variable quantity depending on intentional conditions. Will itself is also not constant, but can in its turn be influenced by the information received from another sender. Conclusion:

  Theorem 2: Information only arises through an intentional, volitional act.

  It is clear from Figure 8 that the nonmaterial entity, information, can influence the material quantities. Electrical, mechanical, or chemical quantities can be steered, controlled, utilized, or optimized by means of intentional information. The strategy for achieving such control is always based on information, whether it is a cybernetic manufacturing technique, instructions for building an economical car, or the utilization of electricity for driving a machine. In the first place, there must be the intention to solve a problem, followed by a conceptual construct for which the information may be coded in the form of a program, a technical drawing, or a description, etc. The next step is then to implement the concept. All technological systems as well as all constructed objects, from pins to works of art, have been produced by means of information. None of these artifacts came into existence through some form of self-organization of matter, but all of them were preceded by establishing the required information. We can now conclude that information was present in the beginning, as the title of this book states.

  Theorem 3: Information comprises the nonmaterial foundation for all technological systems and for all works of art.

  What is the position in regard to biological systems? Does theorem 3 also hold for such systems, or is there some restriction? If we could successfully formulate the theorems in such a way that they are valid as laws of nature, then they would be universally valid according to the essential characteristics of the laws of nature, N2, N3, and N4.

  Chapter 4

  The Five Levels of the Information Concept

  Figure 9: Egyptian hieroglyphics.

  Figure 9 is a picture of icons cut in stone as they appear in the graves of pharaohs and on obelisks of ancient Egypt. The question is whether these pictures represent information or not. So let us check them against the three necessary conditions (NC) for identifying information (discussed in more detail in paragraph 4.2):

  NC 1: A number of symbols are required to establish information. This first condition is satisfied because we have various different symbols like an owl, water waves, a mouth, reeds, etc.

  NC 2: The sequence of the symbols must be irregular. This condition is also satisfied, as there are no regularities or periodic patterns.

  NC 3: The symbols must be written in some recognizable order, such as drawn, printed, chiseled, or engraved in rows, columns, circles, or spirals. In this example, the symbols appear in columns.

  It now seems possible that the given sequence of symbols might comprise information because all three conditions are met, but it could also be possible that the Egyptians simply loved to decorate their monuments. They could have decorated their walls with hieroglyphics,[7] just like we often hang carpets on walls. The true nature of these symbols remained a secret for 15 centuries because nobody could assign meanings to them. This
situation changed when one of Napoleon’s men discovered a piece of black basalt near the town of Rosetta on the Nile in July 1799. This flat stone was the size of an ordinary dinner plate and it was exceptional because it contained inscriptions in three languages: 54 lines of Greek, 32 lines of Demotic, and 14 lines of hieroglyphics. The total of 1,419 hieroglyphic symbols includes 166 different ones, and there are 468 Greek words. This stone, known as the Rosetta Stone (Figure 10), is now in the possession of the British Museum in London. It played a key role in the deciphering of hieroglyphics, and its first success was the translation of an Egyptian pictorial text in 1822.[8]

  Figure 10: The Rosetta Stone.

  Because the meaning of the entire text was found, it was established that the hieroglyphics really represented information. Today, the meanings of the hieroglyphic symbols are known, and anybody who knows this script is able to translate ancient Egyptian texts. Since the meaning of the codes is known, it is now possible to transcribe English text into hieroglyphics, as is shown in Figure 11, where the corresponding symbols have been produced by means of a computer/plotter system.

  Figure 11: A computer printout of some proverbs (in German) translated into hieroglyphics. Translation of the German text: It is better to receive one helping from God, than 5,000 dishonestly. Do not speak evil, then you will be loved by everybody. Take care that you do not rob a distressed person, nor do violence to somebody in poor health.

 

‹ Prev