Making of the Atomic Bomb

Home > Science > Making of the Atomic Bomb > Page 16
Making of the Atomic Bomb Page 16

by Richard Rhodes


  Lacking protective wealth, the Tellers stuck it out grimly in Budapest, living with their fears. They made forays into the country to barter with the peasants for food. Teller heard of corpses hung from lampposts, though as with von Kármán’s “sadistic excesses” he witnessed none himself.415 Faced with an overcrowded city, the Commune had socialized all housing. The day came for the Koestlers as for the Tellers when soldiers charged with requisitioning bourgeois excesses of floor space and furniture knocked on their doors. The Koestlers, who occupied two threadbare rooms in a boarding house, were allowed to keep what they had, Arthur discovering in the meantime that working people were interesting and different. The Tellers acquired two soldiers who slept on couches in Max Teller’s two office rooms, connected to the Teller apartment.416 The soldiers were courteous; they sometimes shared their food; they urinated on the rubber plant; but because they searched for hoarded money (which was safely stashed in the cover linings of Max Teller’s law books) or simply because the Tellers felt generally insecure, their alien presence terrified.

  Yet it was not finally Hungarian communism that frightened Edward Teller’s parents most. The leaders of the Commune and many among its officials were Jewish—necessarily, since the only intelligentsia Hungary had evolved up to that time was Jewish. Max Teller warned his son that anti-Semitism was coming. Teller’s mother expressed her fears more vividly. “I shiver at what my people are doing,” she told her son’s governess in the heyday of the Commune.417 “When this is over there will be a terrible revenge.”

  In the summer of 1919, as the Commune faltered, eleven-year-old Edward and his older sister Emmi were packed off to safety at their maternal grandparents’ home in Rumania. They returned in the autumn; by then Admiral Nicholas Horthy had ridden into Budapest on a white horse behind a new national army to install a violent fascist regime, the first in Europe. The Red Terror had come and gone, resulting in some five hundred deaths by execution.418 The White Terror of the Horthy regime was of another order of magnitude: at least 5,000 deaths and many of those sadistic; secret torture chambers; a selective but unrelenting anti-Semitism that drove tens of thousands of Jews into exile.419 A contemporary observer, a socialist equally biased against either extreme, wrote that he had “no desire whatever to palliate the brutalities and atrocities of the proletarian dictatorship; its harshness is not to be denied, even if its terrorists operated more with insults and threats than with actual deeds. But the tremendous difference between the Red and the White Terror is beyond all question.”420 A friend of the new regime, Max von Neumann brought his family home.

  In 1920 the Horthy regime introduced a numerus clausus law restricting university admission which required “that the comparative numbers of the entrants correspond as nearly as possible to the relative population of the various races or nationalities.”421 The law, which would limit Jewish admissions to 5 percent, a drastic reduction, was deliberately anti-Semitic. Though he was admitted to the University of Budapest and might have stayed, von Neumann chose instead to leave Hungary at seventeen, in 1921, for Berlin, where he came under the influence of Fritz Haber and studied first for a chemical engineering degree, awarded at the Technical Institute of Zürich in 1925. A year later he picked up a Ph.D. summa cum laude in mathematics at Budapest; in 1927 he became a Privatdozent at the University of Berlin; in 1929, at twenty-five, he was invited to lecture at Princeton. He was professor of mathematics at Princeton by 1931 and accepted lifetime appointment to the Institute for Advanced Study in 1933.

  Von Neumann experienced no personal violence in Hungary, only upheaval and whatever anxiety his parents communicated. He nevertheless felt himself scarred. His discussion with Stanislaw Ulam went on more ominously from identifying Carpathian villages as the ultimate places of origin of Hungary’s talented expatriates. “It will be left to historians of science,” Ulam writes, “to discover and explain the conditions which catalyzed the emergence of so many brilliant individuals from that area. . . . Johnny used to say that it was a coincidence of some cultural factors which he could not make precise: an external pressure on the whole society of this part of Central Europe, a feeling of extreme insecurity in the individuals, and the necessity to produce the unusual or else face extinction.”422

  Teller was too young to leave Hungary during the worst of the Horthy years. This was the adolescent period, as Time magazine paraphrased Teller later, when Max Teller “dinned into his son two grim lessons: 1) he would have to emigrate to some more favorable country when he grew up and 2) as a member of a disliked minority he would have to excel the average just to stay even.”423 Teller added a lesson of his own. “I loved science,” he told an interviewer once. “But also it offered a possibility for escaping this doomed society.”424 Von Kármán embeds in his autobiography a similarly striking statement about the place of science in his emotional life. When the Hungarian Soviet Republic collapsed he retreated to the home of a wealthy friend, then found his way back to Germany. “I was glad to get out of Hungary,” he writes of his state of mind then. “I felt I had had enough of politicians and government upheavals. . . . Suddenly I was enveloped in the feeling that only science is lasting.”425

  That science can be a refuge from the world is a conviction common among men and women who turn to it. Abraham Pais remarks that Einstein “once commented that he had sold himself body and soul to science, being in flight from the ‘I∍ and the ‘we’ to the ‘it.’ ”426 But science as a means of escaping from the familiar world of birth and childhood and language when that world mounts an overwhelming threat—science as a way out, a portable culture, an international fellowship and the only abiding certitude—must become a more desperate and therefore a more total dependency. Chaim Weizmann gives some measure of that totality in the harsher world of the Russian Pale when he writes that “the acquisition of knowledge was not for us so much a normal process of education as the storing up of weapons in an arsenal by means of which we hoped later to be able to hold our own in a hostile world.”427 He remembers painfully that “every division of one’s life was a watershed.”428

  Teller’s experience in Hungary before he left it in 1926, at seventeen, for the Technical Institute at Karlsruhe was far less rigorous than Weizmann’s in the Pale. But external circumstance is no sure measure of internal wounding, and there are not many horrors as efficient for the generation of deep anger and terrible lifelong insecurity as the inability of a father to protect his child.

  * * *

  “In the last few years,” Niels Bohr wrote the German theoretical physicist Arnold Sommerfeld at Munich in April 1922, “I have often felt myself scientifically very lonesome, under the impression that my effort to develop the principles of the quantum theory systematically to the best of my ability has been received with very little understanding.”429 Through the war years Bohr had struggled to follow, wherever it might lead, the “radical change” he had introduced into physics. It led to frustration. However stunning Bohr’s prewar results had been, too many older European scientists still thought his inconsistent hypotheses ad hoc and the idea of a quantized atom repugnant. The war itself stalled advance.

  Yet he persisted, groping his way forward in the darkness. “Only a rare and uncanny intuition,” writes the Italian physicist Emilio Segrè, “saved Bohr from getting lost in the maze.”430 He guided himself delicately by what he called the correspondence principle. As Robert Oppenheimer once explained it, “Bohr remembered that physics was physics and that Newton described a great part of it and Maxwell a great part of it.” So Bohr assumed that his quantum rules must approximate, “in situations where the actions involved were large compared to the quantum, to the classical rules of Newton and of Maxwell.”431 That correspondence between the reliable old and the unfamiliar new gave him an outer limit, a wall to feel his way along.

  Bohr built his Institute for Theoretical Physics with support from the University of Copenhagen and from Danish private industry, occupying it on January 18, 1921, aft
er more than a year of delay—he struggled with the architect’s plans as painfully as he struggled with his scientific papers. The city of Copenhagen ceded land for the institute on the edge of the Faelledpark, broad with soccer fields, where a carnival annually marks the Danish celebration of Constitution Day. The building itself was modest gray stucco with a red tile roof, no larger than many private homes, with four floors inside that looked like only three outside because the lowest floor was built partly below grade and the top floor, which served the Bohrs at first as an apartment, extended into the space under the peaked roof (later, as Bohr’s family increased to five sons, he built a house next door and the apartment served as living quarters for visiting students and colleagues). The institute included a lecture hall, a library, laboratories, offices and a popular PingPong table where Bohr often played. “His reactions were very fast and accurate,” says Otto Frisch, “and he had tremendous will power and stamina. In a way those qualities characterized his scientific work as well.”432

  In 1922, the year his Nobel Prize made him a Danish national hero, Bohr accomplished a second great theoretical triumph: an explanation of the atomic structure that underlies the regularities of the periodic table of the elements. It linked chemistry irrevocably to physics and is now standard in every basic chemistry text. Around the nucleus, Bohr proposed, atoms are built up of successive orbital shells of electrons—imagine a set of nested spheres—each shell capable of accommodating up to a certain number of electrons and no more. Elements that are similar chemically are similar because they have identical numbers of electrons in their outermost shells, available there for chemical combination. Barium, for example, an alkaline earth, the fifty-sixth element in the periodic table, atomic weight 137.34, has electron shells filled successively by 2, 8, 18, 18, 8 and 2 electrons. Radium, another alkaline earth, the eighty-eighth element, atomic weight 226, has electron shells filled successively by 2, 8, 18, 32, 18, 8 and 2 electrons. Because the outer shell of each element has two valence electrons, barium and radium are chemically similar despite their considerable difference in atomic weight and number. “That [the] insecure and contradictory foundation [of Bohr’s quantum hypotheses],” Einstein would say, “was sufficient to enable a man of Bohr’s unique instinct and perceptiveness to discover the major laws of spectral lines and of the electron shells of the atom as well as their significance for chemistry appeared to me like a miracle. . . . This is the highest form of musicality in the sphere of thought.”433

  Confirming the miracle, Bohr predicted in the autumn of 1922 that element 72 when discovered would not be a rare earth, as chemists expected and as elements 57 through 71 are, but would rather be a valence 4 metal like zirconium. George de Hevesy, now settled in at Bohr’s institute, and a newly arrived young Dutchman, Dirk Coster, went to work using X-ray spectroscopy to look for the element in zircon-bearing minerals. They had not finished their checking when Bohr went off with Margrethe in early December to claim his Nobel Prize. They called him in Stockholm the night before his Nobel lecture, only just in time: they had definitely identified element 72 and it was chemically almost identical to zirconium. They named the new element hafnium after Hafnia, the old Roman name for Copenhagen. Bohr announced its discovery with pride at the conclusion of his lecture the next day.

  Despite his success with it, quantum theory needed a more solid foundation than Bohr’s intuition. Arnold Sommerfeld in Munich was an early contributor to that work; after the war the brightest young men, searching out the growing point of physics, signed on to help. Bohr remembered the period as “a unique cooperation of a whole generation of theoretical physicists from many countries,” an “unforgettable experience.”434 He was lonesome no more.

  Sommerfeld brought with him to Göttingen in the early summer of 1922 his most promising student, a twenty-year-old Bavarian named Werner Heisenberg, to hear Bohr as visiting lecturer there. “I shall never forget the first lecture,” Heisenberg wrote fifty years later, the memory still textured with fine detail. “The hall was filled to capacity. The great Danish physicist . . . stood on the platform, his head slightly inclined, and a friendly but somewhat embarrassed smile on his lips.435 Summer light flooded in through the wide-open windows. Bohr spoke fairly softly, with a slight Danish accent. . . . Each one of his carefully formulated sentences revealed a long chain of underlying thoughts, of philosophical reflections, hinted at but never fully expressed. I found this approach highly exciting.”

  Heisenberg nevertheless raised pointed objection to one of Bohr’s statements. Bohr had learned to be alert for bright students who were not afraid to argue. “At the end of the discussion he came over to me and asked me to join him that afternoon on a walk over the Hain Mountain,” Heisenberg remembers. “My real scientific career only began that afternoon.”436 It is the memory of a conversion. Bohr proposed that Heisenberg find his way to Copenhagen eventually so that they could work together. “Suddenly, the future looked full of hope.”437 At dinner the next evening Bohr was startled to be challenged by two young men in the uniforms of the Göttingen police. One of them clapped him on the shoulder: “You are arrested on the charge of kidnapping small children!” They were students, genial frauds.438 The small child they guarded was Heisenberg, boyish with freckles and a stiff brush of red hair.

  Heisenberg was athletic, vigorous, eager—“radiant,” a close friend says. “He looked even greener in those days than he really was, for, being a member of the Youth Movement . . . he often wore, even after reaching man’s estate, an open shirt and walking shorts.”439 In the Youth Movement young Germans on hiking tours built campfires, sang folk songs, talked of knighthood and the Holy Grail and of service to the Fatherland. Many were idealists, but authoritarianism and anti-Semitism already bloomed poisonously among them. When Heisenberg finally got to Copenhagen at Eastertime in 1924 Bohr took him off on a hike through north Zealand and asked him about it all. “‘But now and then our papers also tell us about more ominous, anti-Semitic, trends in Germany, obviously fostered by demagogues,’ ” Heisenberg remembers Bohr questioning. “ ‘Have you come across any of that yourself?’ ” That was the work of some of the old officers embittered by the war, Heisenberg said, “but we don’t take these groups very seriously.”440

  Now, as part of the “unique cooperation” Bohr would speak of, they went freshly to work on quantum theory. Heisenberg seems to have begun with a distaste for visualizing unmeasurable events. As an undergraduate, for example, he had been shocked to read in Plato’s Timaeus that atoms had geometric forms: “It saddened me to find a philosopher of Plato’s critical acumen succumbing to such fancies.”441 The orbits of Bohr’s electrons were similarly fanciful, Heisenberg thought, and Max Born and Wolfgang Pauli, his colleagues at Göttingen, concurred. No one could see inside an atom. What was known and measurable was the light that came out of the atomic interior, the frequencies and amplitudes associated with spectral lines. Heisenberg decided to reject models entirely and look for regularities among the numbers alone.

  He returned to Göttingen as a Privatdozent working under Born. Toward the end of May 1925 his hay fever flared; he asked Born for two weeks’ leave of absence and made his way to Heligoland, a stormy sliver of island twenty-eight miles off the German coast in the North Sea, where very little pollen blew. He walked; he swam long distances in the cold sea; “a few days were enough to jettison all the mathematical ballast that invariably encumbers the beginning of such attempts, and to arrive at a simple formulation of my problem.”442 A few days more and he glimpsed the system he needed. It required a strange algebra that he cobbled together as he went along where numbers multiplied in one direction often produced different products from the same numbers multiplied in the opposite direction. He worried that his system might violate the basic physical law of the conservation of energy and he worked until three o’clock in the morning checking his figures, nervously making mistakes. By then he saw that he had “mathematical consistency and coherence.” And so often wi
th deep physical discovery, the experience was elating but also psychologically disturbing:

  At first, I was deeply alarmed. I had the feeling that, through the surface of atomic phenomena, I was looking at a strangely beautiful interior, and felt almost giddy at the thought that I now had to probe this wealth of mathematical structures nature had so generously spread out before me. I was far too excited to sleep, and so, as a new day dawned, I made for the southern tip of the island, where I had been longing to climb a rock jutting out into the sea. I now did so without too much trouble, and waited for the sun to rise.

  Back in Göttingen Max Born recognized Heisenberg’s strange mathematics as matrix algebra, a mathematical system for representing and manipulating arrays of numbers on matrices—grids—that had been devised in the 1850s and that Born’s teacher David Hilbert had extended in 1904. In three months of intensive work Born, Heisenberg and their colleague Pascual Jordan then developed what Heisenberg calls “a coherent mathematical framework, one that promised to embrace all the multifarious aspects of atomic physics.”443 Quantum mechanics, the new system was called. It fit the experimental evidence to a high degree of accuracy. Pauli managed with heroic effort to apply it to the hydrogen atom and derive in a consistent way the same results—the Balmer formula, Rydberg’s constant—that Bohr had derived from inconsistent assumptions in 1913. Bohr was delighted. At Copenhagen, at Göttingen, at Munich, at Cambridge, the work of development went on.

 

‹ Prev