The Quantum Universe

Home > Other > The Quantum Universe > Page 5
The Quantum Universe Page 5

by Brian Cox


  Another example of this type of abstraction is the description of the temperature in a room, which can be represented using an array of numbers. The numbers do not exist as physical objects any more than our clocks do. Instead, the set of numbers and their association with points in the room is simply a convenient way of representing the temperature. Physicists call this mathematical structure a field. The temperature field is simply an array of numbers, one for every point. In the case of a quantum particle, the field is more complicated because it requires a clock face at each point rather than a single number. This field is usually called the wavefunction of the particle. The fact that we need an array of clocks for the wavefunction, whilst a single number would suffice for the temperature field or for water waves, is an important difference. In physics jargon, the clocks are there because the wavefunction is a ‘complex’ field, whilst the temperature or water wave heights are both ‘real’ fields. We shall not need any of this language, because we can work with the clock faces.1

  We should not worry that we have no direct way to sense a wave-function, in contrast to a temperature field. The fact that it is not something we can touch, smell or see directly is irrelevant. Indeed, we would not get very far in physics if we decided to restrict our description of the Universe to things we can directly sense.

  In our discussion of the double-slit experiment for electrons, we said that the electron wave is largest where the electron is most likely to be. This interpretation allowed us to appreciate how the stripy interference pattern can be built up dot by dot as the electrons arrive. But this is not a precise enough statement for our purposes now. We want to know what the probability is to find an electron at a particular point – we want to put a number on it. This is where the clocks become necessary, because the probability that we want is not simply the wave height. The correct thing to do is to interpret the square of the length of the clock hand as the probability to find the particle at the site of the clock. This is why we need the extra flexibility that the clocks give us over simple numbers. That interpretation is not meant to be at all obvious, and we cannot offer any good explanation for why it is correct. In the end, we know that it is correct because it leads to predictions that agree with experimental data. This interpretation of the wavefunction was one of the thorny issues facing the early pioneers of quantum theory.

  The wavefunction (that is our cluster of clocks) was introduced into quantum theory in a series of papers published in 1926 by the Austrian physicist Erwin Schrödinger. His paper of 21 June contains an equation that should be etched into the mind of every undergraduate physics student. It is known, naturally enough, as the Schrödinger equation:

  The Greek symbol Ψ (pronounced ‘psi’) represents the wavefunction, and the Schrödinger equation describes how it changes as time passes. The details of the equation are irrelevant for our purposes because we are not going to follow the Schrödinger approach in this book. What is interesting, though, is that, although Schrödinger wrote down the correct equation for the wavefunction, he initially got the interpretation wrong. It was Max Born, one of the oldest of the physicists working on the quantum theory in 1926, who, at the grand old age of forty-three, gave the correct interpretation in a paper submitted just four days after Schrödinger’s. We mention his age because quantum theory during the mid 1920s gained the nickname ‘Knabenphysik’ – ‘boy physics’ – because so many of the key protagonists were young. In 1925 Heisenberg was twenty-three, Wolfgang Pauli, whose famous Exclusion Principle we shall meet later on, was twenty-two, as was Paul Dirac, the British physicist who first wrote down the correct equation describing the electron. It is often claimed that their youth freed them from the old ways of thinking and allowed them fully to embrace the radical new picture of the world represented by quantum theory. Schrödinger, at thirty-eight, was an old man in this company and it is true that he was never completely at ease with the theory he played such a key role in developing.

  Born’s radical interpretation of the wavefunction, for which he received the Nobel Prize for physics in 1954, was that the square of the length of the clock hand at a particular point represents the probability of finding a particle there. For example, if the hour-hand on the clock located at some place has a length of 0.1 then squaring this gives 0.01. This means that the probability to find the particle at this place is 0.01, i.e. one in a hundred. You might ask why Born didn’t just square the clocks up in the first place, so that in the last example the clock hand would itself have a length of 0.01. That will not work, because to account for interference we are going to want to add clocks together and adding 0.01 to 0.01 say (which gives 0.02) is not the same as adding 0.1 to 0.1 and then squaring (which gives 0.04).

  We can illustrate this key idea in quantum theory with another example. Imagine doing something to a particle such that it is described by a specific array of clocks. Also imagine we have a device that can measure the location of particles. A simple-to-imagine-butnot-so-simple-to-build device might be a little box that we can rapidly erect around any region of space. If the theory says that the chance of finding a particle at some point is 0.01 (because the clock hand at that point has length 0.1), then when we erect the box around that point we have a one in a hundred chance of finding the particle inside the box afterwards. This means that it is unlikely that we’ll find anything in the box. However, if we are able to reset the experiment by setting everything up such that the particle is once again described by the same initial set of clocks, then we could redo the experiment as many times as we wish. Now, for every 100 times we look in the little box we should, on average, discover that there is a particle inside it once – it will be empty the remaining ninety-nine times.

  The interpretation of the squared length of the clock hand as the probability to find a particle at a particular place is not particularly difficult to grasp, but it does seem as if we (or to be more precise, Max Born) plucked it out of the blue. And indeed, from a historical perspective, it proved very difficult for some great scientists, Einstein and Schrödinger among them, to accept. Looking back on the summer of 1926, fifty years later, Dirac wrote: ‘This problem of getting the interpretation proved to be rather more difficult than just working out the equations.’ Despite this difficulty, it is noteworthy that by the end of 1926 the spectrum of light emitted from the hydrogen atom, one of the great puzzles of nineteenth-century physics, had already been computed using both Heisenberg’s and Schrödinger’s equations (Dirac eventually proved that their two approaches were in all cases entirely equivalent).

  Einstein famously expressed his objection to the probabilistic nature of quantum mechanics in a letter to Born in December 1926. ‘The theory says a lot but does not really bring us any closer to the secret of the “old one”. I, at any rate, am convinced that He is not playing at dice.’ The issue was that, until then, it had been assumed that physics was completely deterministic. Of course, the idea of probability is not exclusive to quantum theory. It is regularly used in a variety of situations, from gambling on horse races to the science of thermodynamics, upon which whole swathes of Victorian engineering rested. But the reason for this is a lack of knowledge about the part of the world in question, rather than something fundamental. Think about tossing a coin – the archetypal game of chance. We are all familiar with probability in this context. If we toss the coin 100 times, we expect, on average, that fifty times it will land heads and fifty times tails. Pre-quantum theory, we were obliged to say that, if we knew everything there is to know about the coin – the precise way we tossed it into the air, the pull of gravity, the details of little air currents that swish through the room, the temperature of the air, etc. – then we could, in principle, work out whether the coin would land heads or tails. The emergence of probabilities in this context is therefore a reflection of our lack of knowledge about the system, rather than something intrinsic to the system itself.

  The probabilities in quantum theory are not like this at all; they are fundamental.
It is not the case that we can only predict the probability of a particle being in one place or another because we are ignorant. We can’t, even in principle, predict what the position of a particle will be. What we can predict, with absolute precision, is the probability that a particle will be found in a particular place if we look for it. More than that, we can predict with absolute precision how this probability changes with time. Born expressed this beautifully in 1926: ‘The motion of particles follows probability laws but the probability itself propagates according to the law of causality.’ This is exactly what Schrödinger’s equation does: it is an equation that allows us to calculate exactly what the wavefunction will look like in the future, given what it looks like in the past. In that sense, it is analogous to Newton’s laws. The difference is that, whilst Newton’s laws allow us to calculate the position and speed of particles at any particular time in the future, quantum mechanics allows us to calculate only the probability that they will be found at a particular place.

  This loss of predictive power was what bothered Einstein and many of his colleagues. With the benefit of over eighty years of hindsight and a great deal of hard work, the debate now seems somewhat redundant, and it is easy to dismiss it with the statement that Born, Heisenberg, Pauli, Dirac and others were correct and Einstein, Schrödinger and the old guard were wrong. But it was certainly possible back then to believe that quantum theory was incomplete in some way, and that the probabilities appear, just as in thermodynamics or coin tossing, because there is some information about the particles that we are missing. Today that idea gains little purchase – theoretical and experimental progress indicate that Nature really does use random numbers, and the loss of certainty in predicting the positions of particles is an intrinsic property of the physical world: probabilities are the best we can do.

  4. Everything That Can Happen Does Happen

  We’ve now set up a framework within which we can explore quantum theory in detail. The key ideas are very simple in their technical content, but tricky in the way they challenge us to confront our prejudices about the world. We have said that a particle is to be represented by lots of little clocks dotted around and that the length of the clock hand at a particular place (squared) represents the probability that the particle will be found at that place. The clocks are not the main point – they are a mathematical device we’ll use to keep track of the odds on finding a particle somewhere. We also gave a rule for adding clocks together, which is necessary to describe the phenomenon of interference. We now need to tie up the final loose end, and look for the rule that tells us how the clocks change from one moment to the next. This rule will be the replacement of Newton’s first law, in the sense that it will allow us to predict what a particle will do if we leave it alone. Let’s begin at the beginning and imagine placing a single particle at a point.

  Figure 4.1. The single clock representing a particle that is definitely located at a particular point in space.

  We know how to represent a particle at a point, and this is shown in Figure 4.1. There will be a single clock at that point, with a hand of length 1 (because 1 squared is 1 and that means the probability to find the particle there is equal to 1, i.e. 100 per cent). Let’s suppose that the clock reads 12 o’clock, although this choice is completely arbitrary. As far as the probability is concerned, the clock hand can point in any direction, but we have to choose something to start with, so 12 o’clock will do. The question we want to answer is the following: what is the chance that the particle will be located somewhere else at a later time? In other words, how many clocks do we have to draw, and where do we have to place them, at the next moment? To Isaac Newton, this would have been a very dull question; if we place a particle somewhere and do nothing to it, then it’s not going to go anywhere. But Nature says, quite categorically, that this is simply wrong. In fact, Newton could not be more wrong.

  Here is the correct answer: the particle can be anywhere else in the Universe at the later time. That means we have to draw an infinite number of clocks, one at every conceivable point in space. That sentence is worth reading lots of times. Probably we need to say more.

  Allowing the particle to be anywhere at all is equivalent to assuming nothing about the motion of the particle. This is the most unbiased thing we can do, and that does have a certain ascetic appeal to it,1 although admittedly it does seem to violate the laws of common sense, and perhaps the laws of physics as well.

  A clock is a representation of something definite – the likelihood that a particle will be found at the position of the clock. If we know that a particle is at one particular place at a particular time, we represent it by a single clock at that point. The proposal is that if we start with a particle sitting at a definite position at time zero, then at ‘time zero plus a little bit’ we should draw a vast, indeed infinite, array of new clocks, filling the entire Universe. This admits the possibility that the particle hops off to anywhere and everywhere else in an instant. Our particle will simultaneously be both a nanometre away and also a billion light years away in the heart of a star in a distant galaxy. This sounds, to use our native northern vernacular, daft. But let’s be very clear: the theory must be capable of explaining the double-slit experiment and, just as a wave spreads out if we dip a toe into still water, so an electron initially located somewhere must spread out as time passes. What we need to establish is exactly how it spreads.

  Unlike a water wave, we are proposing that the electron wave spreads out to fill the Universe in an instant. Technically speaking, we’d say that the rule for particle propagation is different from the rule for water wave propagation, although both propagate according to a ‘wave equation’. The equation for water waves is different from the equation for particle waves (which is the famous Schrödinger equation we mentioned in the last chapter), but both encode wavy physics. The differences are in the details of how things propagate from place to place. Incidentally, if you know a little about Einstein’s theory of relativity you might be getting nervous when we speak of a particle hopping across the Universe in an instant, because that would seem to correspond to something travelling faster than the speed of light. Actually, the idea that a particle can be here and, an instant later, somewhere else very far away is not in itself in contradiction with Einstein’s theories, because the real statement is that information cannot travel faster than the speed of light, and it turns out that quantum theory remains constrained by that. As we shall learn, the dynamics corresponding to a particle leaping across the Universe are the very opposite of information transfer, because we cannot know where the particle will leap to beforehand. It seems we are building a theory on complete anarchy, and you might naturally be concerned that Nature surely cannot behave like this. But, as we shall see as the book unfolds, the order we see in the everyday world really does emerge out of this fantastically absurd behaviour.

  If you are having trouble swallowing this anarchic proposal – that we have to fill the entire Universe with little clocks in order to describe the behaviour of a single subatomic particle from one moment to the next – then you are in good company. Lifting the veil on quantum theory and attempting to interpret its inner workings is baffling to everyone. Niels Bohr famously wrote that ‘Those who are not shocked when they first come across quantum mechanics cannot possibly have understood it’, and Richard Feynman introduced volume III of The Feynman Lectures on Physics with the words: ‘I think I can safely say that nobody understands quantum mechanics.’ Fortunately, following the rules is far simpler than trying to visualize what they actually mean. The ability to follow through the consequences of a particular set of assumptions carefully, without getting too hung up on the philosophical implications, is one of the most important skills a physicist learns. This is absolutely in the spirit of Heisenberg: let us set out our initial assumptions and compute their consequences. If we arrive at a set of predictions that agree with observations of the world around us, then we should accept the theory as good.

  Man
y problems are far too difficult to solve in a single mental leap, and deep understanding rarely emerges in ‘eureka’ moments. The trick is to make sure that you understand each little step and after a sufficient number of steps the bigger picture should emerge. Either that or we realize we have been barking up the wrong tree and have to start over from scratch. The little steps we’ve outlined so far are not difficult in themselves, but the idea that we have decided to take a single clock and turn it into an infinity of clocks is certainly a tricky concept, especially if you try to imagine drawing them all. Eternity is a very long time, to paraphrase Woody Allen, especially near the end. Our advice is not to panic or give up and, in any case, the infinity bit is a detail. Our next task is to establish the rule that tells us what all those clocks should actually look like at some time after we laid down the particle.

  The rule we are after is the essential rule of quantum theory, although we will need to add a second rule when we come to consider the possibility that the Universe contains more than just one particle. But first things first: for now, let’s focus on a single particle alone in the Universe – no one can accuse us of rushing into things. At one instant in time, we’ll suppose we know exactly where it is, and it’s therefore represented by a single, solitary clock. Our specific task is to identify the rule that will tell us what each and every one of the new clocks, scattered around the Universe, should look like at any time in the future.

 

‹ Prev