Borderlands of Science

Home > Other > Borderlands of Science > Page 20
Borderlands of Science Page 20

by Charles Sheffield


  The relevance of all this to planets suitable for life is defined by celestial mechanics. When we have a star like our Sun, planetary orbits around it tend to be stable over long periods of time. The Earth has varied little in its distance from Sol, and hence in the amount of solar heating, during its whole lifetime. The mathematical description of the motion of the Earth around the Sun is provided by the "two-body problem," solved by Isaac Newton in the late seventeenth century. Perturbation effects of other planets, particularly Jupiter, were included by later workers such as Laplace, and confirmed the stability of the Earth's orbit.

  When two or more stars are in one stellar system, however, the relevant mathematical problem for the motion of a planet is termed the "N-body problem." The formal exact solution has never been found, but approximate solutions can be obtained in any particular case, using computers. When this is done, the fate of a planet in an N-body system of multiple stars is found to be very different from the stable orbits of our own solar system. Orbits are far more chaotic. Close encounters of a planet with one or other of the primary stars will take place, distances vary wildly over time, and in extreme cases a combination of gravitational forces can eject the planet totally from the stellar system.

  Even if the planet does not suffer such a fate, it moves through various extreme situations, now close to a star and baking in radiation, now far away in the freezing dark. This is, so far as we know, not a promising environment for the development of life.

  There are two ways for a storyteller to avoid these problems. One is to be so blissfully ignorant of basic astronomy and astrophysics that you see no problem putting life and intelligence any place that you choose, and you hope for equal ignorance on the part of the reader. If you have come this far with me, you will know that I do not approve of such an approach.

  The other way is to choose a star without companions, of a stellar type close to our own Sun. Suitable candidates that are also our stellar neighbors include Epsilon Eridani, at 11 light-years, and Tau Ceti, at 12 light-years. No one knows if either star has planets, though Epsilon Eridani has a ring of dust particles which is considered a promising sign. You are free to give either of these stars a world with the size and chemistry of Earth, and explain to the reader that this is the case.

  You will then not have the chore of building a plausible world, and you will be safe from criticism. But as Hal Clement, justly famous for designing and explaining exotic worlds, says, "Where's the fun in that?"

  TABLE 7.1. The Moons of Jupiter.

  Physical properties

  Name

  Mass

  Radius

  Density

  Albedo

  (1020 kg)

  (kms)

  Galilean Satellites

  Io

  893

  1,821

  3.530

  0.61

  Europa

  480

  1,565

  2.990

  0.64

  Ganymede

  1,482

  2,634

  1.940

  0.42

  Callisto

  1,076

  2,403

  1.851

  0.20

  Lesser Satellites

  Metis

  20610

  0.05

  Adrastea

  10610

  0.05

  Amalthea

  131x73x67

  0.05

  Thebe

  50610

  0.05

  Leda

  5

  Himalia

  85610

  Lysithea

  12

  Elara

  40610

  Ananke

  10

  Carme

  15

  Pasiphae

  18

  Sinope

  14

  Orbital parameters

  Name

  Semimajor axis

  Period*

  Inclination

  Eccentricity

  (1000's kms)

  (days)

  (degrees)

  Galilean satellites

  Io

  422

  1.769

  0.040

  0.041

  Europa

  671

  3.552

  0.470

  0.0101

  Ganymede

  1,070

  7.155

  0.195

  0.0015

  Callisto

  1,883

  16.689

  0.281

  0.007

  Lesser Satellites

  Metis

  128

  0.297

  0

  0.041

  Adrastea

  129

  0.298

  0

  0

  Amalthea

  181

  0.498

  0.40

  0.003

  Thebe

  222

  0.675

  0.8

  0.0015

  Leda

  11,094

  238.72

  27

  0.163

  Himalia

  11,480

  250.56

  28

  0.163

  Lysithea

  11,720

  259.22

  29

  0.107

  Elara

  11,737

  259.65

  28

  0.207

  Ananke

  21,200

  631R

  147

  0.169

  Carme

  22,600

  692R

  163

  0.207

  Pasiphae

  23,500

  735R

  148

  0.378

  Sinope

  23,700

  758R

  153

  0.275

  * The symbol R after the period indicates that the moon is in retrograde motion;

  i.e., it orbits in the opposite direction to Jupiter's rotation on its axis.

  TABLE 7.2 The Moons of Saturn

  Physical properties

  Name

  Mass

  Radius

  Density

  Albedo

  (1020 kg)

  (km)

  Mimas

  0.38

  198.8

  1.140

  0.5

  Enceladus

  0.73

  249.1

  1.120

  1.0

  Tethys

  6.22

  529.9

  1.000

  0.9

  Dione

  10.52

  560

  1.440

  0.7

  Rhea

  23.10

  764

  1.240

  0.7

  Titan

  1,345.50

  2,575

  1.881

  0.21

  Hyperion

  185x140x113

  0.19-0.25

  Iapetus

  15.9

  718

  1.020

  0.05-0.5

  Phoebe 1

  15x110x105

  0.06

  Lesser Satellites

  Pan

  10

  0.5

  Atlas

  18.5x17.2x13.5

  0.9

  Prometheus

  0.0014

  74x50x34

  0.270

  0.6

  Pandora

  0.0013

  55x44x31

  0.420

  0.9

  Epimetheus

  0.0055

  69x55x55

  0.630

  0.8

  Janus

  0.0198

  99.3x95.6x75.6

  0.650

  0.8

  Calypso

  15x8x8

  0.6

  Telesto

  1
5x12.5x7.5

  0.5

  Helene

  16

  0.7

  Orbital parameters

  Name

  Semimajor axis

  Period*

  Inclination

  Eccentricity

  (1000's kms)

  (days)

  (degrees)

  Mimas

  185.5

  0.942

  1.53

  0.0202

  Enceladus

  238.0

  1.370

  0.02

  0.0045

  Tethys

  294.7

  1.888

  1.09

  0.0000

  Dione

  377.4

  2.737

  0.02

  0.0022

  Rhea

  527.0

  4.518

  0.35

  0.001

  Titan

  1,221.9

  15.945

  0.33

  0.0292

  Hyperion

  1,481.1

  21.277

  0.43

  0.1042

  Iapetus

  3,561.3

  79.330

  7.52

  0.0283

  Phoebe

  12,952

  550.48R

  175.3

  0.163

  Lesser Satellites

  Pan

  133.6

  0.575

  Atlas

  137.6

  0.602

  0

  0

  Prometheus

  139.4

  0.613

  0.0

  0.0024

  Pandora

  141.7

  0.629

  0.0

  0.0042

  Epimetheus

  151.4

  0.695

  0.34

  0.009

  Janus

  151.5

  0.695

  0.14

  0.007

  Calypso

  294.7

  1.888

  0

  0

  Telesto

  294.7

  1.888

  0

  0

  Helene

  377.4

  2.737

  0.2

  0.005

  * The symbol R after the period indicates that the moon is in retrograde motion.

  TABLE 7.3 The Moons of Uranus

  Physical properties

  Name

  Mass

  Radius

  Density

  Albedo

  (1020 kg)

  (km)

  Miranda

  0.659

  240x234x233

  1.200

  0.27

  Ariel

  13.53

  581x578x578

  1.670

  0.34

  Umbriel

  11.72

  584.7

  1.400

  0.18

  Titania

  35.27

  788.9

  1.710

  0.27

  Oberon

  30.14

  761.4

  1.630

  0.24

  Name

  Mass

  Radius

  Density

  Albedo

  (1020 kg)

  (km)

  Lesser Satellites

  Cordelia

  1

  0.07

  Ophelia

  16

  0.07

  Bianca

  22

  0.07

  Cressida

  33

  0.07

  Desdemona

  29

  0.07

  Juliet

  42

  0.07

  Portia

  55

  0.07

  Rosalind

  29

  0.07

  Belinda

  34

  0.07

  Puck

  77

  0.07

  Orbital parameters

  Name

  Semimajor axis

  Period

  Inclination

  Eccentricity

  (1000's kms)

  (days)

  (degrees)

  Miranda

  129.8

  1.413

  4.22

  0.0027

  Ariel

  191.2

  2.520

  0.31

  0.0034

  Umbriel

  266.0

  4.144

  0.36

  0.0050

  Titania

  435.8

  8.706

  0.10

  0.0022

  Oberon

  582.6

  13.463

  0.10

  0.0008

  Lesser Satellites

  Cordelia

  49.75

  0.335

  0.1

  0.000

  Ophelia

  53.76

  0.376

  0.1

  0.010

  Bianca

  59.17

  0.435

  0.2

  0.001

  Cressida

  61.78

  0.464

  0.0

  0.000

  Desdemona

  62.66

  0.474

  0.2

  0.000

  Juliet

  64.36

  0.493

  0.1

  0.001

  Portia

  66.10

  0.513

  0.1

  0.000

  Rosalind

  69.93

  0.558

  0.3

  0.000

  Belinda

  75.26

  0.624

  0.0

  0.000

  Puck

  86.00

  0.762

  0.3

  0.000

  TABLE 7.4 The Moons of Neptune.

  Physical properties

  Name

  Mass

  Radius

  Density

  Albedo

  (1020 kg)

  (km)

  Naiad

  29

  0.06

  Thalassa

  40

  0.06

  Despina

  74

  0.06

  Galatea

  79

  0.06

  Larissa

  104x89

  0.06

  Proteus

  218x208x201

  0.06

  Triton

  214.7

  1,352.6

  2.054

  0.7

  Nereid

  170

  0.2

  Orbital parameters

  Name

  Semimajor axis

  Period*

  Inclination

  Eccentricity

  (1000's kms)

  (days)

  (degrees)

  Naiad

  48.23

  0.29

  4.74

  0.00

  Thalassa

  50.08

  0.31

  0.21

  0.00

  Despina

  52.53

  0.33

  0.07

  0.00

  Galatea

  61.95

  0.43

  0.05

  0.00

  Larissa

  73.55

  0.56

  0.20

  0.00

  Proteus

  117.65

  1.12

  0.55

  0.00

  Triton

  354.76

  5.88R

  156.83

  Nereid

 

‹ Prev