Why We Sleep

Home > Other > Why We Sleep > Page 39
Why We Sleep Page 39

by Matthew Walker


  fn2 S. Cohen, R. Conduit, S. W. Lockley, S. M. Rajaratnam, and K. M. Cornish, “The relationship between sleep and behavior in autism spectrum disorder (ASD): a review,” Journal of Neurodevelopmental Disorders 6, no. 1 (2011): 44.

  fn3 A. W. Buckley, A. J. Rodriguez, A. Jennison, et al. “Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development,” Archives of Pediatrics and Adolescent Medicine 164, no. 11 (2010): 1032–37. See also S. Miano, O. Bruni, M. Elia, A. Trovato, et al., “Sleep in children with autistic spectrum disorder: a questionnaire and polysomnographic study,” Sleep Medicine 9, no. 1 (2007): 64–70.

  fn4 G. Vogel and M. Hagler, “Effects of neonatally administered iprindole on adult behaviors of rats,” Pharmacology Biochemistry and Behavior 55, no. 1 (1996): 157–61.

  fn5 Ibid.

  fn6 V. Havlicek, R. Childiaeva, and V. Chernick, “EEG frequency spectrum characteristics of sleep states in infants of alcoholic mothers,” Neuropädiatrie 8, no. 4 (1977): 360–73. See also S. Loffe, R. Childiaeva, and V. Chernick, “Prolonged effects of maternal alcohol ingestion on the neonatal electroencephalogram,” Pediatrics 74, no. 3 (1984): 330–35.

  fn7 A. Ornoy, L. Weinstein-Fudim, and Z. Ergaz. “Prenatal factors associated with autism spectrum disorder (ASD),” Reproductive Toxicology 56 (2015): 155–69.

  fn8 E. J. Mulder, L. P. Morssink, T. van der Schee, and G. H. Visser, “Acute maternal alcohol consumption disrupts behavioral state organization in the near-term fetus,” Pediatric Research 44, no. 5 (1998): 774–79.

  fn9 Beyond sleep, alcohol also inhibits the milk ejection reflex and causes a temporary decrease in milk yield.

  fn10 J. A. Mennella and P. L. Garcia-Gomez, “Sleep disturbances after acute exposure to alcohol in mothers’ milk,” Alcohol 25, no. 3 (2001): 153–58. See also J. A. Mennella and C. J. Gerrish, “Effects of exposure to alcohol in mother’s milk on infant sleep,” Pediatrics 101, no. 5 (1998): E2.

  fn11 While not directly related to sleep quantity or quality, alcohol use by the mother before co-sleeping with their newborn infants (bed to couch) leads to a seven- to ninefold increase of sudden infant death syndrome (SIDS), compared with those who do not use alcohol. (P. S. Blair, P. Sidebotham, C. Evason-Coombe, et al., “Hazardous cosleeping environments and risk factors amenable to change: case-control study of SIDS in southwest England,” BMJ 339 [2009]: b3666.)

  fn12 The ability for infants and young children to become independent nighttime sleepers is the keen focus of—or perhaps better phrased, the outright obsession of—many new parents. There are innumerable books whose sole focus is to outline the best practices for infant and child sleep. This book is not meant to offer an overview of the topic. However, a key recommendation is to always put your child to bed when they are drowsy, rather than when they are asleep. In doing so, infants and children are significantly more likely to develop an independent ability to self-soothe at night, so that they can put themselves back to sleep without needing a parent present.

  fn13 Even though the degree of neural network connectivity decreases during development, the physical size of our brain cells, and thus the physical size of the brain and head, increases.

  fn14 With all this talk of removing synapses in the adolescent brain, I should point out that plenty of strengthening continues to occur in the adolescent (and adult) brain within those circuits that remain, and this is carried out by different sleeping brainwaves we’ll discuss in the next chapter. Suffice it to say that the ability to learn, retain, and thus remember new memories persists, even when set against the backdrop of general connectivity downscaling throughout late development. Nevertheless, by teenage years, the brain is less malleable, or plastic, than during infancy or early childhood—one example being the ease with which younger children can pick up a second language compared with older adolescents.

  fn15 M. G. Frank, N. P. Issa, and M. P. Stryker, “Sleep enhances plasticity in the developing visual cortex,” Neuron 30, no. 1 (2001): 275–87.

  fn16 N. Olini, S. Kurth, and R. Huber, “The effects of caffeine on sleep and maturational markers in the rat,” PLOS ONE 8, no. 9 (2013): e72539.

  fn17 S. Sarkar, M. Z. Katshu, S. H. Nizamie, and S. K. Praharaj, “Slow wave sleep deficits as a trait marker in patients with schizophrenia,” Schizophrenia Research 124, no. 1 (2010): 127–33.

  fn18 M. F. Profitt, S. Deurveilher, G. S. Robertson, B. Rusak, and K. Semba, “Disruptions of sleep/wake patterns in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia,” Schizophrenia Bulletin 42, no. 5 (2016): 1207–15.

  fn19 D. J. Foley, A. A. Monjan, S. L. Brown, E. M. Simonsick et al., “Sleep complaints among elderly persons: an epidemiologic study of three communities,” Sleep 18, no. 6 (1995): 425–32. See also D. J. Foley, A. A. Monjan, E. M. Simonstick, R. B. Wallace, and D. G. Blazer, “Incidence and remission of insomnia among elderly adults: an epidemiologic study of 6,800 persons over three years,” Sleep 22 (Suppl 2) (1999): S366–72.

  fn20 Tips for safe sleep in the elderly: (1) have a side lamp within reach that you can switch on easily, (2) use dim or motion-activated night-lights in the bathrooms and hallways to illuminate your path, (3) remove obstacles or rugs en route to the bathroom to prevent stumbles or trips, and (4) keep a telephone by your bed with emergency phone numbers programmed on speed dial.

  fn21 A. G. Wade, I. Ford, G. Crawford, et al., “Efficacy of prolonged release melatonin in insomnia patients aged 55–80 years: quality of sleep and next-day alertness outcomes,” Current Medical Research and Opinion 23, no. 10: (2007): 2597–605.

  CHAPTER 6 YOUR MOTHER AND SHAKESPEARE KNEW: THE BENEFITS OF SLEEP FOR THE BRAIN

  fn1 “Sleep that knits up the ravell’d sleeve of care,

  The death of each day’s life, sore labour’s bath,

  Balm of hurt minds, great nature’s second course,

  Chief nourisher in life’s feast,—”

  William Shakespeare, Macbeth, Folger Shakespeare Library (New York: Simon & Schuster; first edition, 2003).

  fn2 The literal-minded reader should not take this analogy to suggest that I believe the human brain, or even its functions of learning and memory, operates as a computer does. There are abstract similarities, yes, but there are many clear differences, large and small. A brain cannot be said to be the equivalent of a computer, nor vice versa. It is simply that certain conceptual parallels offer useful analogies to comprehend how the biological processes of sleep operate.

  fn3 Nicholas Hammond, Fragmentary Voices: Memory and Education at Port-Royal (Tübingen, Germany: Narr Dr. Gunter; 2004).

  fn4 J. G. Jenkins and K. M. Dallenbach, “Obliviscence during sleep and waking,” American Journal of Psychology 35 (1924): 605–12.

  fn5 Such findings may offer cognitive justification for the common incidence of unintentional napping in public in Japanese culture, termed inemuri (“sleep while being present”).

  fn6 G. Martin-Ordas and J. Call, “Memory processing in great apes: the effect of time and sleep,” Biology Letters 7, no. 6 (2011): 829–32.

  fn7 This technique, called transcranial direct current brain stimulation (tDCS), should not be confused with electroconvulsive shock therapy, in which the size of electrical voltage inserted into the brain is many hundreds or thousands of times stronger (the consequences of which were so arrestingly illustrated in Jack Nicholson’s performance in the movie One Flew Over the Cuckoo’s Nest).

  fn8 This nighttime reactivation method only works during NREM sleep and does not work if attempted during REM sleep.

  fn9 You can even pay participants for each word they correctly recall to try and override what may be a simple reporting bias, and the results don’t change.

  fn10 M. F. Bergeron, M. Mountjoy, N. Armstrong, M. Chia, et al., “International Olympic Committee consensus statement on youth athletic development,” British Journal of Sports Medicine 49, no. 13 (2015): 843–51.

  fn11 M. D. Milewski
et al., “Chronic lack of sleep is associated with increased sports injuries in adolescent athletes,” Journal of Paediatric Orthopaedics 34, no. 2 (2014): 129–33.

  fn12 Ken Berger, “In multibillion-dollar business of NBA, sleep is the biggest debt” (June 7, 2016), accessed at http://www.cbssports.com/nba/news/in-multi-billion-dollar-business-of-nba-sleep-is-the-biggest-debt/.

  fn13 K. Herron, D. Dijk, J. Ellis, J. Sanders, and A. M. Sterr, “Sleep correlates of motor recovery in chronic stroke: a pilot study using sleep diaries and actigraphy,” Journal of Sleep Research 17 (2008): 103; and C. Siengsukon and L. A. Boyd, “Sleep enhances off-line spatial and temporal motor learning after stroke,” Neurorehabilitation & Neural Repair 4, no. 23 (2009): 327–35.

  CHAPTER 7 TOO EXTREME FOR THE Guinness Book of World Records: Sleep Deprivation and the Brain

  fn1 Foundation for Traffic Safety. “Acute Sleep Deprivation and Crash Risk,” accessed at https://www.aaafoundation.org/acute-sleep-deprivation-and-crash-risk.

  fn2 Common myths that are of no use in helping to overcome drowsiness while driving include: turning up the radio, winding down the car window, blowing cold air on your face, splashing cold water on your face, talking on the phone, chewing gum, slapping yourself, pinching yourself, punching yourself, and promising yourself a reward for staying awake.

  fn3 Also known as DEC2.

  fn4 K. J. Brower and B. E. Perron, “Sleep disturbance as a universal risk factor for relapse in addictions to psychoactive substances,” Medical Hypotheses 74, no. 5 (2010): 928–33; D. A. Ciraulo, J. Piechniczek-Buczek, and E. N. Iscan, “Outcome predictors in substance use disorders,” Psychiatric Clinics of North America 26, no. 2 (2003): 381–409; J. E. Dimsdale, D. Norman, D. DeJardin, and M. S. Wallace, “The effect of opioids on sleep architecture,” Journal of Clinical Sleep Medicine 3, no. 1 (2007): 33–36; E. F. Pace-Schott, R. Stickgold, A. Muzur, P. E. Wigren, et al., “Sleep quality deteriorates over a binge-abstinence cycle in chronic smoked cocaine users,” Psychopharmacology (Berl) 179, no. 4 (2005): 873–83; and J. T. Arnedt, D. A. Conroy, and K. J. Brower, “Treatment options for sleep disturbances during alcohol recovery,” Journal of Addictive Diseases 26, no. 4 (2007): 41–54.

  fn5 K. J. Brower and B. E. Perron, “Sleep disturbance as a universal risk factor for relapse in addictions to psychoactive substances,” Medical Hypotheses 74, no. 5 (2010): 928–33.

  fn6 N. D. Volkow, D. Tomasi, G. J. Wang, F. Telang, et al., “Hyperstimulation of striatal D2 receptors with sleep deprivation: Implications for cognitive impairment,” NeuroImage 45, no. 4 (2009): 1232–40.

  fn7 Cossman had other pearls of wisdom, too, such as “The best way to remember your wife’s birthday is to forget it once.”

  fn8 A. S. Lim et al., “Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons,” Sleep 36 (2013): 1027–32; A. S. Lim et al., “Modification of the relationship of the apolipoprotein E epsilon4 allele to the risk of Alzheimer’s disease and neurofibrillary tangle density by sleep,” JAMA Neurology 70 (2013): 1544–51; R. S. Osorio et al., “Greater risk of Alzheimer’s disease in older adults with insomnia,” Journal of the American Geriatric Society 59 (2011): 559–62; and K. Yaffe et al., “Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women,” JAMA 306 (2011): 613–19.

  fn9 S. Ancoli-Israel et al., “Cognitive effects of treating obstructive sleep apnea in Alzheimer’s disease: a randomized controlled study,” Journal of the American Geriatric Society 56 (2008): 2076–81; and W.d.S. Moraes et al., “The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer’s disease: a double-blind placebo-controlled study,” Sleep 29 (2006): 199–205.

  CHAPTER 8 CANCER, HEART ATTACKS, AND A SHORTER LIFE: SLEEP DEPRIVATION AND THE BODY

  fn1 O. Tochikubo, A. Ikeda, E. Miyajima, and M. Ishii, “Effects of insufficient sleep on blood pressure monitored by a new multibiomedical recorder,” Hypertension 27, no. 6 (1996): 1318–24.

  fn2 While leptin and ghrelin may sound like the names of two hobbits, the former is derived from the Greek term leptos, meaning slender, while the latter comes from ghre, the Proto-Indo-European term for growth.

  fn3 I suspect we’ll discover a two-way relationship wherein sleep not only affects the microbiome, but the microbiome can communicate with and alter sleep through numerous different biological channels.

  fn4 Beyond a simple lack of sleep, Dijk’s research team has further shown that inappropriately timed sleep, such as that imposed by jet lag or shift work, can have equally large effects on the expression of human genes as inadequate sleep. By pushing forward an individual’s sleep-wake cycle by a few hours each day for three days, Dijk disrupted a massive one-third of the transcribing activity of the genes in a group of young, healthy adults. Once again, the genes that were impacted controlled elemental life processes, such as the timing of metabolic, thermoregulatory, and immune activity, as well as cardiac health.

  fn5 The significant relationship between short sleep and short or damaged telomeres is observed even when accounting for other factors that are known to harm telomeres, such as age, weight, depression, and smoking.

  CHAPTER 9 ROUTINELY PSYCHOTIC: REM-SLEEP DREAMING

  fn1 I say few, since there are some individuals who can not only become aware that they are dreaming, but even control how and what they dream. It is called lucid dreaming, and we shall read much more about it in a later chapter.

  CHAPTER 10 DREAMING AS OVERNIGHT THERAPY

  fn1 An exception is the condition of post-traumatic stress disorder (PTSD), which we will discuss later in this chapter.

  CHAPTER 11 DREAM CREATIVITY AND DREAM CONTROL

  fn1 One example is language learning, and the extraction of new grammatical rules. Children exemplify this. They will start using the laws of grammar (e.g., conjunctions, tenses, pronouns, etc.) long before they understand what these things are. It is during sleep that their brains implicitly extract these rules, based on waking experience, despite the child lacking explicit awareness of the rules.

  fn2 Quoted by B. M. Kedrov in his text, “On the question of the psychology of scientific creativity (on the occassion of the discovery by D. I. Mendeleev of the periodic law).” Soviet Psychology, 1957, 3:91–113.

  fn3 This ode to the creative juices of dream sleep is sometimes also attributed to the French Symbolist poet Paul-Pierre Roux.

  CHAPTER 12 THINGS THAT GO BUMP IN THE NIGHT: SLEEP DISORDERS AND DEATH CAUSED BY NO SLEEP

  fn1 https://sleepfoundation.org.

  fn2 Fatal familial insomnia is part of a family of prion protein disorders that also includes Creutzfeldt-Jakob disease, or so-called mad cow disease, though the latter involves the destruction of different regions of the brain not strongly associated with sleep.

  fn3 The senior scientist conducting these studies, Allan Rechtschaffen, was once contacted by a well-known women’s fashion magazine after these findings were published. The writer of the article wanted to know if total sleep deprivation offered an exciting, new, and effective way for women to lose weight. Struggling to comprehend the audacity of what had been asked of him, Rechtschaffen attempted to compose a response. Apparently, he admitted that enforced total sleep deprivation in rats results in weight loss, so yes, acute sleep deprivation for days on end does lead to weight loss. The writer was thrilled to get the story line they wanted. However, Rechtschaffen offered a footnote: that in combination with the remarkable weight loss came skin wounds that wept lymph fluid, sores that had eviscerated the rats’ feet, a decrepitude that resembled accelerated aging, together with catastrophic (and ultimately fatal) internal organ and immune-system collapse “just in case appearance, and a longer life, were also part of your readers’ goals.” Apparently, the interview was terminated soon after.

  CHAPTER 13 IPADS, FACTORY WHISTLES, AND NIGHTCAPS: WHAT’S STOPPING YOU FROM SLEEPING?

  fn1 For those wondering why cool blue light is the most pot
ent of the visible light spectrum for regulating melatonin release, the answer lies in our distant ancestral past. Human beings, as we believe is true of all forms of terrestrial organisms, emerged from marine life. The ocean acts like a light filter, stripping away most of the longer, yellow and red wavelength light. What remains is the shorter, blue wavelength light. It is the reason the ocean, and our vision when submerged under its surface, appears blue. Much of marine life, therefore, evolved within the blue visible light spectrum, including the evolution of aquatic eyesight. Our biased sensitivity to cool blue light is a vestigial carryover from our marine forebears. Unfortunately, this evolutionary twist of fate has now come back to haunt us in a new era of blue LED light, discombobulating our melatonin rhythm and thus our sleep-wake rhythm.

  fn2 V. Zarcone, “Alcoholism and sleep,” Advances in Bioscience and Biotechnology 21 (1978): 29–38.

  fn3 R. J. Raymann and Van Someren, “Diminished capability to recognize the optimal temperature for sleep initiation may contribute to poor sleep in elderly people,” Sleep 31, no. 9 (2008): 1301–9.

  fn4 J. A. Horne and B. S. Shackell, “Slow wave sleep elevations after body heating: proximity to sleep and effects of aspirin,” Sleep 10, no. 4 (1987): 383–92. Also J. A. Horne and A. J. Reid, “Night-time sleep EEG changes following body heating in a warm bath,” Electroencephalography and Clinical Neurophysiology 60, no. 2 (1985): 154–57.

  fn5 Not even roosters, since they crow not only at dawn but throughout the entire day.

  fn6 K. Kaida, K. Ogawa, M. Hayashi, and T. Hori, “Self-awakening prevents acute rise in blood pressure and heart rate at the time of awakening in elderly people,” Industrial Health 43, no. 1 (January 2005): 179–85.

 

‹ Prev