Physics

Home > Nonfiction > Physics > Page 16
Physics Page 16

by Aristotle


  6

  Now everything that changes changes time, and that in two senses: for the time in which a thing is said to change may be the primary time, or on the other hand it may have an extended reference, as e.g. when we say that a thing changes in a particular year because it changes in a particular day. That being so, that which changes must be changing in any part of the primary time in which it changes. This is clear from our definition of 'primary', in which the word is said to express just this: it may also, however, be made evident by the following argument. Let ChRh be the primary time in which that which is in motion is in motion: and (as all time is divisible) let it be divided at K. Now in the time ChK it either is in motion or is not in motion, and the same is likewise true of the time KRh. Then if it is in motion in neither of the two parts, it will be at rest in the whole: for it is impossible that it should be in motion in a time in no part of which it is in motion. If on the other hand it is in motion in only one of the two parts of the time, ChRh cannot be the primary time in which it is in motion: for its motion will have reference to a time other than ChRh. It must, then, have been in motion in any part of ChRh.

  And now that this has been proved, it is evident that everything that is in motion must have been in motion before. For if that which is in motion has traversed the distance KL in the primary time ChRh, in half the time a thing that is in motion with equal velocity and began its motion at the same time will have traversed half the distance. But if this second thing whose velocity is equal has traversed a certain distance in a certain time, the original thing that is in motion must have traversed the same distance in the same time. Hence that which is in motion must have been in motion before.

  Again, if by taking the extreme moment of the time-for it is the moment that defines the time, and time is that which is intermediate between moments-we are enabled to say that motion has taken place in the whole time ChRh or in fact in any period of it, motion may likewise be said to have taken place in every other such period. But half the time finds an extreme in the point of division. Therefore motion will have taken place in half the time and in fact in any part of it: for as soon as any division is made there is always a time defined by moments. If, then, all time is divisible, and that which is intermediate between moments is time, everything that is changing must have completed an infinite number of changes.

  Again, since a thing that changes continuously and has not perished or ceased from its change must either be changing or have changed in any part of the time of its change, and since it cannot be changing in a moment, it follows that it must have changed at every moment in the time: consequently, since the moments are infinite in number, everything that is changing must have completed an infinite number of changes.

  And not only must that which is changing have changed, but that which has changed must also previously have been changing, since everything that has changed from something to something has changed in a period of time. For suppose that a thing has changed from A to B in a moment. Now the moment in which it has changed cannot be the same as that in which it is at A (since in that case it would be in A and B at once): for we have shown above that that that which has changed, when it has changed, is not in that from which it has changed. If, on the other hand, it is a different moment, there will be a period of time intermediate between the two: for, as we saw, moments are not consecutive. Since, then, it has changed in a period of time, and all time is divisible, in half the time it will have completed another change, in a quarter another, and so on to infinity: consequently when it has changed, it must have previously been changing.

  Moreover, the truth of what has been said is more evident in the case of magnitude, because the magnitude over which what is changing changes is continuous. For suppose that a thing has changed from G to D. Then if GD is indivisible, two things without parts will be consecutive. But since this is impossible, that which is intermediate between them must be a magnitude and divisible into an infinite number of segments: consequently, before the change is completed, the thing changes to those segments. Everything that has changed, therefore, must previously have been changing: for the same proof also holds good of change with respect to what is not continuous, changes, that is to say, between contraries and between contradictories. In such cases we have only to take the time in which a thing has changed and again apply the same reasoning. So that which has changed must have been changing and that which is changing must have changed, and a process of change is preceded by a completion of change and a completion by a process: and we can never take any stage and say that it is absolutely the first. The reason of this is that no two things without parts can be contiguous, and therefore in change the process of division is infinite, just as lines may be infinitely divided so that one part is continually increasing and the other continually decreasing.

  So it is evident also that that that which has become must previously have been in process of becoming, and that which is in process of becoming must previously have become, everything (that is) that is divisible and continuous: though it is not always the actual thing that is in process of becoming of which this is true: sometimes it is something else, that is to say, some part of the thing in question, e.g. the foundation-stone of a house. So, too, in the case of that which is perishing and that which has perished: for that which becomes and that which perishes must contain an element of infiniteness as an immediate consequence of the fact that they are continuous things: and so a thing cannot be in process of becoming without having become or have become without having been in process of becoming. So, too, in the case of perishing and having perished: perishing must be preceded by having perished, and having perished must be preceded by perishing. It is evident, then, that that which has become must previously have been in process of becoming, and that which is in process of becoming must previously have become: for all magnitudes and all periods of time are infinitely divisible.

  Consequently no absolutely first stage of change can be represented by any particular part of space or time which the changing thing may occupy.

  7

  Now since the motion of everything that is in motion occupies a period of time, and a greater magnitude is traversed in a longer time, it is impossible that a thing should undergo a finite motion in an infinite time, if this is understood to mean not that the same motion or a part of it is continually repeated, but that the whole infinite time is occupied by the whole finite motion. In all cases where a thing is in motion with uniform velocity it is clear that the finite magnitude is traversed in a finite time. For if we take a part of the motion which shall be a measure of the whole, the whole motion is completed in as many equal periods of the time as there are parts of the motion. Consequently, since these parts are finite, both in size individually and in number collectively, the whole time must also be finite: for it will be a multiple of the portion, equal to the time occupied in completing the aforesaid part multiplied by the number of the parts.

  But it makes no difference even if the velocity is not uniform. For let us suppose that the line AB represents a finite stretch over which a thing has been moved in the given time, and let GD be the infinite time. Now if one part of the stretch must have been traversed before another part (this is clear, that in the earlier and in the later part of the time a different part of the stretch has been traversed: for as the time lengthens a different part of the motion will always be completed in it, whether the thing in motion changes with uniform velocity or not: and whether the rate of motion increases or diminishes or remains stationary this is none the less so), let us then take AE a part of the whole stretch of motion AB which shall be a measure of AB. Now this part of the motion occupies a certain period of the infinite time: it cannot itself occupy an infinite time, for we are assuming that that is occupied by the whole AB. And if again I take another part equal to AE, that also must occupy a finite time in consequence of the same assumption. And if I go on taking parts in this way, on the one hand there is no part which will be a meas
ure of the infinite time (for the infinite cannot be composed of finite parts whether equal or unequal, because there must be some unity which will be a measure of things finite in multitude or in magnitude, which, whether they are equal or unequal, are none the less limited in magnitude); while on the other hand the finite stretch of motion AB is a certain multiple of AE: consequently the motion AB must be accomplished in a finite time. Moreover it is the same with coming to rest as with motion. And so it is impossible for one and the same thing to be infinitely in process of becoming or of perishing. The reasoning he will prove that in a finite time there cannot be an infinite extent of motion or of coming to rest, whether the motion is regular or irregular. For if we take a part which shall be a measure of the whole time, in this part a certain fraction, not the whole, of the magnitude will be traversed, because we assume that the traversing of the whole occupies all the time. Again, in another equal part of the time another part of the magnitude will be traversed: and similarly in each part of the time that we take, whether equal or unequal to the part originally taken. It makes no difference whether the parts are equal or not, if only each is finite: for it is clear that while the time is exhausted by the subtraction of its parts, the infinite magnitude will not be thus exhausted, since the process of subtraction is finite both in respect of the quantity subtracted and of the number of times a subtraction is made. Consequently the infinite magnitude will not be traversed in finite time: and it makes no difference whether the magnitude is infinite in only one direction or in both: for the same reasoning will hold good.

  This having been proved, it is evident that neither can a finite magnitude traverse an infinite magnitude in a finite time, the reason being the same as that given above: in part of the time it will traverse a finite magnitude and in each several part likewise, so that in the whole time it will traverse a finite magnitude.

  And since a finite magnitude will not traverse an infinite in a finite time, it is clear that neither will an infinite traverse a finite in a finite time. For if the infinite could traverse the finite, the finite could traverse the infinite; for it makes no difference which of the two is the thing in motion; either case involves the traversing of the infinite by the finite. For when the infinite magnitude A is in motion a part of it, say GD, will occupy the finite and then another, and then another, and so on to infinity. Thus the two results will coincide: the infinite will have completed a motion over the finite and the finite will have traversed the infinite: for it would seem to be impossible for the motion of the infinite over the finite to occur in any way other than by the finite traversing the infinite either by locomotion over it or by measuring it. Therefore, since this is impossible, the infinite cannot traverse the finite.

  Nor again will the infinite traverse the infinite in a finite time. Otherwise it would also traverse the finite, for the infinite includes the finite. We can further prove this in the same way by taking the time as our starting-point.

  Since, then, it is established that in a finite time neither will the finite traverse the infinite, nor the infinite the finite, nor the infinite the infinite, it is evident also that in a finite time there cannot be infinite motion: for what difference does it make whether we take the motion or the magnitude to be infinite? If either of the two is infinite, the other must be so likewise: for all locomotion is in space.

  8

  Since everything to which motion or rest is natural is in motion or at rest in the natural time, place, and manner, that which is coming to a stand, when it is coming to a stand, must be in motion: for if it is not in motion it must be at rest: but that which is at rest cannot be coming to rest. From this it evidently follows that coming to a stand must occupy a period of time: for the motion of that which is in motion occupies a period of time, and that which is coming to a stand has been shown to be in motion: consequently coming to a stand must occupy a period of time.

  Again, since the terms 'quicker' and 'slower' are used only of that which occupies a period of time, and the process of coming to a stand may be quicker or slower, the same conclusion follows.

  And that which is coming to a stand must be coming to a stand in any part of the primary time in which it is coming to a stand. For if it is coming to a stand in neither of two parts into which the time may be divided, it cannot be coming to a stand in the whole time, with the result that that that which is coming to a stand will not be coming to a stand. If on the other hand it is coming to a stand in only one of the two parts of the time, the whole cannot be the primary time in which it is coming to a stand: for it is coming to a stand in the whole time not primarily but in virtue of something distinct from itself, the argument being the same as that which we used above about things in motion.

  And just as there is no primary time in which that which is in motion is in motion, so too there is no primary time in which that which is coming to a stand is coming to a stand, there being no primary stage either of being in motion or of coming to a stand. For let AB be the primary time in which a thing is coming to a stand. Now AB cannot be without parts: for there cannot be motion in that which is without parts, because the moving thing would necessarily have been already moved for part of the time of its movement: and that which is coming to a stand has been shown to be in motion. But since AB is therefore divisible, the thing is coming to a stand in every one of the parts of AB: for we have shown above that it is coming to a stand in every one of the parts in which it is primarily coming to a stand. Since then, that in which primarily a thing is coming to a stand must be a period of time and not something indivisible, and since all time is infinitely divisible, there cannot be anything in which primarily it is coming to a stand.

  Nor again can there be a primary time at which the being at rest of that which is at rest occurred: for it cannot have occurred in that which has no parts, because there cannot be motion in that which is indivisible, and that in which rest takes place is the same as that in which motion takes place: for we defined a state of rest to be the state of a thing to which motion is natural but which is not in motion when (that is to say in that in which) motion would be natural to it. Again, our use of the phrase 'being at rest' also implies that the previous state of a thing is still unaltered, not one point only but two at least being thus needed to determine its presence: consequently that in which a thing is at rest cannot be without parts. Since, then it is divisible, it must be a period of time, and the thing must be at rest in every one of its parts, as may be shown by the same method as that used above in similar demonstrations.

  So there can be no primary part of the time: and the reason is that rest and motion are always in a period of time, and a period of time has no primary part any more than a magnitude or in fact anything continuous: for everything continuous is divisible into an infinite number of parts.

  And since everything that is in motion is in motion in a period of time and changes from something to something, when its motion is comprised within a particular period of time essentially-that is to say when it fills the whole and not merely a part of the time in question-it is impossible that in that time that which is in motion should be over against some particular thing primarily. For if a thing-itself and each of its parts-occupies the same space for a definite period of time, it is at rest: for it is in just these circumstances that we use the term 'being at rest'-when at one moment after another it can be said with truth that a thing, itself and its parts, occupies the same space. So if this is being at rest it is impossible for that which is changing to be as a whole, at the time when it is primarily changing, over against any particular thing (for the whole period of time is divisible), so that in one part of it after another it will be true to say that the thing, itself and its parts, occupies the same space. If this is not so and the aforesaid proposition is true only at a single moment, then the thing will be over against a particular thing not for any period of time but only at a moment that limits the time. It is true that at any moment it is always over against something stationary: but
it is not at rest: for at a moment it is not possible for anything to be either in motion or at rest. So while it is true to say that that which is in motion is at a moment not in motion and is opposite some particular thing, it cannot in a period of time be over against that which is at rest: for that would involve the conclusion that that which is in locomotion is at rest.

  9

  Zeno's reasoning, however, is fallacious, when he says that if everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless. This is false, for time is not composed of indivisible moments any more than any other magnitude is composed of indivisibles.

  Zeno's arguments about motion, which cause so much disquietude to those who try to solve the problems that they present, are four in number. The first asserts the non-existence of motion on the ground that that which is in locomotion must arrive at the half-way stage before it arrives at the goal. This we have discussed above.

  The second is the so-called 'Achilles', and it amounts to this, that in a race the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead. This argument is the same in principle as that which depends on bisection, though it differs from it in that the spaces with which we successively have to deal are not divided into halves. The result of the argument is that the slower is not overtaken: but it proceeds along the same lines as the bisection-argument (for in both a division of the space in a certain way leads to the result that the goal is not reached, though the 'Achilles' goes further in that it affirms that even the quickest runner in legendary tradition must fail in his pursuit of the slowest), so that the solution must be the same. And the axiom that that which holds a lead is never overtaken is false: it is not overtaken, it is true, while it holds a lead: but it is overtaken nevertheless if it is granted that it traverses the finite distance prescribed. These then are two of his arguments.

 

‹ Prev