Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics (Princeton Paperbacks)

Home > Other > Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics (Princeton Paperbacks) > Page 22
Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics (Princeton Paperbacks) Page 22

by Banks, Robert B.


  Deevey, E. S. (1960). “The human population.” Scientific American 203:194–205.

  Denton, G. H., and T. J. Hughes, eds. (1981). The Last Great Ice Sheets. New York: John Wiley.

  Diem, K., and G. Lentner, eds. (1970). Scientific Tables. 7th ed. Basle, Switzerland: Ciba-Geigy Ltd.

  Dingle, A. N., and Y. Lee (1972). “Terminal fallspeeds of raindrops.” Journal of Applied Meteorology 11:877–879.

  Dörrie, H. (1965). 100 Great Problems of Elementary Mathematics. New York: Dover Publications.

  Dunham, W. (1990). Journey Through Genius: The Great Theorems of Mathematics. New York: John Wiley.

  Dunlap, R. A. (1997). The Golden Ratio and Fibonacci Numbers. River Edge, N.J.: World Scientific Publishing.

  Dunn, P., ed. (1980). Mathematical Bafflers. New York: Dover Publications.

  Edwards, D., and M. Hamson (1990). Guide to Mathematical Modelling. Boca Raton, Fla.: CRC Press.

  Edwards, I. E. S. (1993). The Pyramids of Egypt. Rev. ed. New York: Penguin Books.

  Feller, W. (1940). “On the logistic law of growth and its experimental verifications in biology.” Chapter 4 in Applicable Mathematics of Nonphysical Phenomena, eds. F. Olivera-Pinto and B. W. Connolly, 123–138. Chichester, U.K.: Ellis Horwood.

  Fernie, J. D. (1991, 1992). “The shape of the earth.” American Scientist 79:108–110, 393–395; 80:125–127.

  Forray, M. J. (1986). Variational Calculus in Science and Engineering. New York: McGraw-Hill.

  Furlong, W., and B. McCandless (1981). So Proudly We Hail. The History of the United States Flag. Washington, D.C.: Smithsonian Institution Press.

  Gardner, M. (1992). Fractal Music, HyperCards and More. New York: W. H. Freeman.

  Gellert, W., M. Küstner, M. Hellwich, and H. Kästner (1977). The VNR Concise Encyclopedia of Mathematics. New York: Van Nostrand Reinhold.

  Ghyka, M. (1978). The Geometry of Art and Life. New York: Dover Publications.

  Glaister, P. (1996). “Golden earrings.” Mathematical Gazette 80:224–225.

  Goldberg, S. (1983). Probability in Social Science. Cambridge, Mass.: Birkhäuser.

  Greenkorn, R. A. (1983). Flow Phenomena in Porous Media. New York: Marcel Dekker.

  Greenler, R. (1980). Rainbows, Halos and Glories. Cambridge, U.K.: Cambridge University Press.

  Griliches, Z. (1960). “Hybrid corn and the economics of innovation.” Science 132:275–280.

  Gross, M. G. (1985). Oceanography. 5th ed. Columbus, Ohio: Charles E. Merrill.

  Harte, J. (1985). Consider a Spherical Cow. Los Altos, Calif.: William Kaufmann.

  Hayes, B. (1984). “On the ups and downs of hailstone numbers.” Scientific American 250:13–17.

  Hoffman, M. E. (1998). “The bull and the silo: an application of curvature.” American Mathematical Monthly 105:55–58.

  Huntley, H. E. (1970). The Divine Proportion: A Study in Mathematical Beauty. New York: Dover Publications.

  Isenberg, C. (1992). The Science of Soap Films and Soap Bubbles. New York: Dover Publications.

  Jolley, L. B. W. (1961). Summation of Series. New York: Dover Publications.

  Kappraff, J. (1990). Connections: The Geometric Bridge Between Art and Science. New York: McGraw-Hill.

  Kepler, J. ([1611] 1966). The Six-Cornered Snowflake. Ed. Colin Hardie. Reprint, Oxford, U.K.: Clarendon Press.

  Keyfitz, N. (1966). “How many people have lived on earth?” Demography 3:581–582.

  ———(1968). Introduction to the Mathematics of Population. Reading, Mass.: Addison-Wesley.

  Kirby, R. S., S. Withington, A. B. Darling, and F. G. Kilgour (1990). Engineering in History. New York: Dover Publications.

  Knight, C., and N. Knight (1973). “Snow crystals.” Scientific American 228:100–107.

  Kosko, E. (1987). “Three-dimensional pipe joining.” In Mathematical Modelling: Classroom Notes in Applied Mathematics, ed. M. S. Klamkin. Philadelphia: SIAM.

  Lagarias, J. C. (1985). “The 3x + 1 problem and its generalizations.” American Mathematical Monthly 92:3–23.

  Lamb, H. (1945). Hydrodynamics. 6th ed. New York: Dover Publications.

  Lawrence, J. D. (1972). A Catalog of Special Plane Curves. New York: Dover Publications.

  Lines, M. E. (1986). A Number for Your Thoughts. Bristol, U.K.: Adam Hilger.

  ———(1990). Think of a Number. Bristol, U.K.: Adam Hilger.

  Lockwood, E. H. (1961). A Book of Curves. Cambridge, U.K.: Cambridge University Press.

  Lord, N. (1995). “Balancing and golden rectangles.” The Mathematical Gazette 79:573–574.

  MacDonald, N. (1989). Biological Delay Systems: Linear Stability Theory. Cambridge, U.K.: Cambridge University Press.

  Mandelbrot, M. (1982). The Fractal Geometry of Nature. New York: W. H. Freeman & Co.

  Maor, E. (1994). e: The Story of a Number. Princeton, N.J.: Princeton University Press.

  Minnaert, M. (1993). Light and Colour in the Outdoors. New York: Springer-Verlag.

  Melzak, Z. A. (1976). Mathematical Ideas. Modeling and Applications. New York: John Wiley.

  Muir, J. (1996). Of Men and Numbers: The Story of the Great Mathematicians. New York: Dover Publications.

  Mutchler, C. K., and C. L. Larson (1971). “Splash amounts from waterdrop impact on a smooth surface.” Water Resources Research 7:195–200.

  Neill, W. (1993). By Nature's Design. San Francisco: Chronicle Books.

  Newman, J. R., ed. (1956). The World of Mathematics. New York: Simon and Schuster.

  Nicolls, B. (1987). “A sense of proportion.” Report of the 10th International Congress of Vexillology, 138–142. Winchester Mass.: Flag Research Center.

  Nussenzveig, H. M. (1977). “The theory of the rainbow.” Scientific American 236:116–127.

  Oerlemans, J., and C. J. van der Veen (1984). Ice Sheets and Climate. Dordrecht, Netherlands: D. Reidel.

  Ogilvy, C. S., and J. T. Anderson (1988). Excursions in Number Theory. New York: Dover Publications.

  Peitgen, H. O., and P. H. Richter (1986). The Beauty of Fractals. New York: Springer-Verlag.

  Perelman, Y. (1982). Physics Can Be Fun. Moscow: Mir Publishers.

  Pollard, A. H. (1973). Mathematical Models for the Growth of Human Populations. Cambridge, U.K.: Cambridge University Press.

  Raisz, E. (1962). Principles of Cartography. New York: McGraw-Hill.

  Rand McNally (1978). Grand Atlas of the World. Chicago: Rand McNally.

  Resnikoff, H. L., and R. O. Wells, Jr. (1984). Mathematics in Civilization. New York: Dover Publications.

  Ribenboim, P. (1995). The New Book of Prime Number Records. New York: Springer-Verlag.

  Richardson, E. G. (1952). Dynamics of Real Fluids. London: Pitman.

  Rizika, J. W. (1950). “A philomathic study of rain.” American Scientist 38:247–252.

  Schele, L., and D. Freidel (1990). A Forest of Kings. New York: William Morrow.

  Schwartz, L. W. (1988). “Recent developments in Hele-Shaw flow modeling.” In Numerical Simulation in Oil Recovery, ed. M. F. Wheeler. New York: Springer-Verlag.

  Scorer, R. S. (1978). Environmental Aerodynamics. Chichester, U.K.: Ellis Horwood.

  Sloane, N. J. A. (1973). A Handbook of Integer Sequences. New York: Academic Press.

  Smith, W. (1975a). Flag Book of the United States. New York: Morrow.

  ———(1975b). Flags Through the Ages and Across the World. New York: McGraw-Hill.

  Snyder, G. S. (1984). Maps of the Heavens. New York: Abbeville Press.

  Snyder, J. P. (1987). Map Projections—A Working Manual. USGS Professional Paper 1395. Washington, D.C.: Government Printing Office.

  ———(1993). Flattening the Earth: Two Thousand Years of Map Projections. Chicago: University of Chicago Press.

  Snyder, J. P., and P. M. Voxland (1989). An Album of Map Projections. USGS Professional Paper 1453. Washington, D.C.: Government Printing Office.

  Song Jian and Yu Jingyuan (1988). Population System Control. Berlin: Springer-Verlag. />
  Soroka, W. W. (1954). Analog Methods in Computation and Simulation. New York: McGraw-Hill.

  Steinhaus, H. (1969). Mathematical Snapshots. New York: Oxford University Press.

  Struik, D. J. (1967). A Concise History of Mathematics. New York: Dover Publications.

  Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1942). The Oceans: Their Physics, Chemistry and General Biology. Englewood Cliffs, N.J.: Prentice-Hall.

  The World Almanac and Book of Facts (1994), New York: Pharos Books, Scripps Howard Co.

  Thompson, D. W. (1961). On Form and Growth. Abridged edition, ed. J. T. Bonner. London: Cambridge University Press.

  Thompson, J. M. T., and H. B. Stewart (1986). Nonlinear Dynamics and Chaos. New York: John Wiley.

  United Nations (1993). World Population Prospects 1992. Department of International Economic and Social Affairs, Population Studies No. 135. New York: United Nations.

  Vajda, S. (1989). Fibonacci & Lucas Numbers and the Golden Section: Theory and Applications. Chichester, U.K.: Ellis Horwood.

  von Foerster, H., P. A. Mora, and L. W. Amiot (1960). “Doomsday: Friday, 13 November, A.D. 2026.” Science 132:1291–1295.

  von Seggern, D. H. (1990). CRC Handbook of Mathematical Curves and Surfaces. Boca Raton, Fla.: CRC Press.

  Walker, J. (1987). “Fluid interfaces, including fractal flows, can be studied in a Hele-Shaw cell.” Scientific American 287:134–138.

  Wells, D. (1986). The Penguin Dictionary of Curious and Interesting Numbers. Hammondsworth, U.K.: Penguin Books.

  Westing, A. H. (1981). “A note on how many humans that have ever lived.” Bioscience 7:523–524.

  Wright, J. W., ed. (1992). The Universal Almanac 1993. Kansas City, Mo.: Andrews and McMeel.

  Index

  The index that appeared in the print version of this title does not match the pages in your eBook. Please use the search function on your eReading device to search for terms of interest. For your reference, the terms that appear in the print index are listed below.

  air resistance

  Alexander's dark band

  amount: of air in the world; of water in the world

  arctangent-exponential equation of growth

  area of a surface

  Argand diagram

  atmospheric pressure distribution

  azimuthal, conical, and cylindrical projection

  Berghaus star projection

  Bernoulli, Jakob

  Bernoulli, Johann

  bodies of the solar system

  brachistochrone

  calculus of variations

  California population growth

  cardioid

  cartography

  centrifugal force

  circle and parabola

  coalition (or hyperbolic) growth

  Collatz (or 3N + 1 or Syracuse) problem

  complex number

  composite number

  conic sections

  cycloid

  date of Doomsday

  delta, Feigenbaum number

  Descartes-Newtonian theory of the rainbow

  Descartes, Rene

  dimensional analysis

  doubling time

  e, base of natural logarithms

  ellipsoid

  equation of fluid statics

  Euler, Leonhard

  Euler's relationship

  evaporation

  exponential growth

  Fermat number

  Fermat, Pierre de

  Fibonacci (Leonardo of Pisa)

  Fibonacci numbers

  flag of the United States, dimensions and colors

  flags of various nations, dimensions and colors

  fractals and chaos theory

  frequency of oscillation

  gamma, Euler's constant

  Gauss, Carl Friedrich

  general gas law

  geometrical optics

  geomorphology

  global warming

  gnomonic, stereographic, and orthographic projection

  gravitational force

  gravity-driven maglev transportation system

  Great Pyramids of Egypt

  hailstone number

  Hele-shaw cell

  hexagons and hexagrams

  honeycombs and hexagons

  honking bird

  Huygens, Christiaan

  hybrid corn adoption

  hydrologie cycle

  hyperbolic sine

  hypsometric (or hypsographic) curve

  ice age

  ice production and melting

  imaginary number

  inflection point on a growth curve

  Kepler, Johannes

  kinetic energy of a raindrop

  Koch snowflakes and fractals

  law of cosines

  law of gravitation

  law of sines

  laws of motion

  Lambert azimuthal equal-area projection

  Lambert, Johann Heinrich

  laminar and potential flow analogies

  least squares analysis

  Leibniz, Gottfried

  lemniscate

  length of a curve

  limitations to growth

  linear pattern analysis

  logarithmic integral

  logarithmic spiral

  loxodrome or rhumb line

  Malthusian growth (geometric progression)

  Malthus, Thomas

  mechanical and electrical circuit analogies

  melted ice caps and glaciers

  Mercator, Gerardus

  Mercator projection

  modified coalition growth

  mountain range design recipe

  natural number of integer

  nautical miles and knots

  Nautilus sea shell

  Newton, Isaac

  optimum velocity

  pentagons and pentagrams

  perfect number

  period of oscillation

  phi, golden number or ratio or divine proportion

  pi, ratio of circumference of circle and diameter

  population crowding effects

  population of the world

  porosity of spheres

  power of a rainfall

  primary rainbow

  prime number; fundamental theorem; largest known

  pseudosphere

  pursuit problem

  rainfall and runoff

  recurrence relationship

  reflection and refraction

  refractive index

  river discharges

  rivers: sources and mouths

  secondary rainbow

  simple harmonic motion

  slices in higher-dimension space

  slices: of licorice string; of pizza; of watermelon

  Snell's law

  Snell, Willebrord

  snowflakes and hexagons

  soap film and membrane analogies

  spherical triangle

  sporting balls: base, tennis, and golf

  Steiner, Jakob

  tertiary and quarternary rainbows

  time of descent

  total number of people who have lived

  tractrix

  trifolium

  velocity of escape

  velocity of a raindrop

 

‹ Prev