Chris Townsend

Home > Other > Chris Townsend > Page 9
Chris Townsend Page 9

by The Backpacker's Handbook - 3rd Ed


  Many boots have a thin layer of foam padding between the lining and the outside, usually around the ankle and the upper tongue, but occasionally throughout the boot. Such padding does provide more cushioning for the foot, but it also makes boots warmer, something to be avoided in hot weather. Foam also absorbs water and dries slowly. I prefer boots with minimum padding; I rely on socks for warmth.

  Many boots now feature linings, sometimes called booties, made from vapor-permeable waterproof membranes such as Gore-Tex and Sympatex. These certainly make the boots waterproof when they are new, but once the membrane is torn or punctured, it will leak. How long they keep water out varies. The membrane itself is fragile, and if your feet move in your boots, the membranes can wear out very quickly. Some people swear by them, others swear at them. My experience suggests that such linings last longest and perform best in boots that have few seams and are made from leather rather than nylon and suede. Membranes laminated to leather are less likely to be cut by tiny specks of sharp grit than those laminated to more open-weave synthetic fabrics. The first membranes leaked fairly quickly, sometimes after only a few weeks’ use, but newer ones do last longer. I have a pair of trail shoes several years old that have had months of use and are still waterproof. Even so, good-quality footwear should long outlast a membrane lining.

  KEY FEATURES: THREE-SEASON BOOTS AND SHOES

  A good fit. This is more important than anything else. Regardless of the quality, badly fitting footwear means blisters and sore feet.

  Light weight. One pound on your feet equals five pounds on your back.

  Deep lugs for good grip on rough ground.

  A torsionally stiff insole that flexes at the right point.

  Shock-absorbing midsoles for cushioning and comfort.

  A solid heel counter to center your foot over the sole.

  A soft cuff to minimize rubbing (in boots).

  Speed hooks or pulleys for quick lacing.

  A sewn-in tongue to keep water out.

  Cross section through a three-season boot.

  Waterproof-breathable membranes have another big disadvantage. Although they let some water vapor out, they are far less breathable than footwear without them. Thus they are hot and sweaty in warm weather, especially if the uppers get saturated—which is why water-repellent leathers are best for the outside. And if you do get them wet inside (say, by stepping in a deep pool or creek), they are slow to dry, because although vapor can pass through the membrane, liquid cannot. There are better ways to keep your feet dry (see Waterproof Socks, pages 78–79).

  A few boots have nonbreathable waterproof liners. These are suitable only for cold, wet conditions, and even then your feet can get quite wet from sweat. I’d avoid these boots.

  The Tongue

  Sewn-in, gusseted tongues with light padding inside are the most comfortable and water resistant, and they’re found on most footwear; the only disadvantage of gusseted tongues is that if you’re not wearing gaiters, snow can collect in the gussets and soak into the boots. Oxford construction is a better design for snow: two flaps of leather (basically extensions of the upper) fold over the inner tongue, which may or may not be sewn in, often held in place by small hook-and-loop tabs. Some heavier boots achieve the same purpose by a gusseted tongue with another tongue behind it, sewn in only at the base. On high-ankle and stiff leather boots, the tongue may be hinged so it flexes easily.

  Lacing

  Boots may be laced up using D-rings, hooks, eyelets, webbing, miniature pulleys, and speed lacing (tiny metal tunnels through which the laces can be pulled quickly). D-rings may be plastic and sewn to the upper (the norm on shoes and ultralight boots) or metal and attached to a swivel clip riveted to the upper. The easiest system to use combines two or three rows of D-rings at the bottom of the laces with several rows of hooks or speed lacing at the top. With this system you can open the boot fully at the top yet tighten the laces quickly. This advantage is not trivial when you’re trying to don a stiff, half-frozen boot in a small tent while wearing gloves, with a blizzard outside. Boots with D-rings alone involve far more fiddling with the laces and are harder to tighten precisely. Some boots use tiny pulleys instead of D-rings. These make it very easy to adjust the fit evenly across the foot. Whatever the type of lacing, many boots have a locking hook offset at the ankle that holds the lace in place even when it’s undone. The offset position allows you to tighten the boot around the instep to stop your foot from slipping.

  Old-style eyelets are rare on boots now, though they are still found on some shoes. Although they are the most awkward system to use, eyelets are the least susceptible to breakage. Shoes often have webbing loops for laces, and these are starting to appear on boots.

  My current winter boots (5-pound high-topped leather monsters, but good with crampons) have four rows of speed lacing, one set of metal D-rings, one set of offset webbing loops, and two rows of hooks. My lightweight hikers (2 pounds, 2 ounces, leather) have two rows of speed lacing, offset locking hooks, and two rows of hooks. And my trail shoes (1 pound, 11 ounces, mostly mesh with synthetic leather reinforcements) have one speed-lacing tunnel, a pair of synthetic leather loops, and three rows of speed lacing. The single lacing tunnel allows the lower lacing to run asymmetrically across the foot, following the flex line, rather than straight across, a sensible innovation first introduced by Garmont. All these lacing methods work well, enabling me to lace the boots quickly and adjust the tension so the footwear fits snugly.

  Laces are usually made from braided nylon, which rarely breaks, though it may wear through from abrasion after much use. Round laces seem to last longer than flat ones, though not by much. I used to carry spare laces, but I gave it up long ago; it’s been years since I had a lace snap, even on long walks. If one ever does, I’ll replace it with a length of the nylon cord I always carry.

  Whatever the type of lacing system, footwear must be laced properly if it is to support your feet. The laces should hold the footwear snugly around the forefoot but not be too tight across the instep, which can hinder the forward flex of the ankle. Loose laces allow the feet to move in the footwear; too-tight laces are painful.

  Scree Collars

  Many boots have one or more rolls of foampadded soft leather or synthetic material at the cuff to keep out stones, grass seeds, mud, and other debris, but for this to work well the boots have to be laced up so tightly that they restrict ankle movement. The collars themselves don’t seem to cause any problems, so their presence or absence can be ignored when choosing a boot.

  Seams

  Conventional wisdom says the fewer seams, the better, because seams may admit water and can abrade, allowing the boot to disintegrate; thus one-piece leather boots with seams only at the heel and around the tongue should prove the most durable and water resistant.

  I agree. Having used quite a few pairs of shoes and boots made from several pieces of stitched fabric and leather, I’ve found their life expectancy limited by how long the seams remained intact. Side seams usually split first. (This can be postponed, but not prevented, by coating them heavily with a seam sealer or quick-setting flexible epoxy, which also decreases the likelihood of leaks.)

  I don’t rely solely on one-piece leather construction for footwear, however, as it’s usually found only in medium to heavy footwear. But for long treks in cold, wet conditions, I still prefer one-piece leather boots. It’s a difficult trade-off. I learned this the hard way. Walking the length of the Canadian Rockies, I used two pairs of sectional leather boots from different makers; they both split at the side seams after about 750 miles. I guessed that only a one-piece leather boot would have lasted the whole walk, so two years later, when I set off on a thousand-mile walk across the Yukon Territory, I wore one-piece boots. They lasted the whole trip.

  However, it’s debatable whether you should wear just one pair of boots or shoes for an entire long-distance hike. I now think you should change footwear after a while because the internal structure can begin to brea
k down and the cushioning in the sole can compact. This is especially so with midsoles made from Evazote (EVA), a closed-cell foam, and similar materials. Heavier boots are generally more durable, but even they will change shape eventually and may no longer fit so well.

  Removable Inserts

  Most boots and shoes have a removable foam insert, sometimes incorrectly called a footbed or an insole. Some are made from dual-density foam or have pads of shock-absorbing material built into the heel and forefoot for cushioning. Thicker inserts made from shock-absorbing materials such as Sorbothane are said to improve cushioning. Some of these inserts are relatively heavy, adding up to 5 ounces to the weight of footwear, and they may also be hot in warm weather. I used to use such inserts but found they didn’t last. Since they don’t support your foot, the cushioning they give is mostly illusory, as your foot can still flatten out and overpronate. For real support, you need a stabilizing footbed (see Stabilization and Footbeds, pages 49–51).

  If your feet tend to swell a lot (as is likely on long-distance walks and in hot weather), removing the inserts will make your footwear roomier. I’ve often done this toward the end of a long day. Inserts and footbeds get damp from sweat during the day, and moisture can accumulate beneath them, so taking them out each evening to let them and the boots dry is a good idea. Don’t put them near a fire or other heat source, though—they melt very easily.

  Insoles, Midsoles, and Lasting

  The boot sole must support the foot, protect it from shock, and be flexible enough to allow a natural gait, but it doesn’t need to be stiff. Extensive hiking over rugged terrain in sandals and flexible trail shoes has convinced me that flexibility is more important.

  The upper layer of the sole is the insole, or lasting board, a flat, foot-shaped piece of material. Shoes with this layer are described as being board-lasted because the board is fixed to the last and the shoe built around it. The stiffness of a shoe or boot is in part due to the material the board is made from. A flexible fiberboard insole (which may be made from pressed wood pulp or may be synthetic) is common in running and trail shoes and the lightest boots. In inexpensive footwear, the insoles may be cardboard. (There are reports of cardboard insoles breaking up when wet, though this hasn’t happened to any I’ve used.) Much hiking footwear now has torsionally stiff plastic or nylon insoles graded for flex according to the size of the boot. This means that small boots have the same relative flex as larger boots (other stiffening materials can make small boots too stiff and large ones too bendy). Many manufacturers vary the stiffness of the different insoles—the stiffest material is reserved for mountaineering boots, and the most flexible for what is usually described as “easy trail use” with a light load. You can judge flex by bending the boot: a stiff, hard-to-bend shoe is fine for kicking steps in snow but is tiring for most walking. A flexible shoe makes for easy hiking.

  The lightest, most flexible shoes and boots may not have a lasting board at all. Instead, when the insole is removed, a line of stitching will be seen running round the edge of the sole or down the middle. This is known as sliplasting, in which the upper is sewn into a sock shape and then slipped onto the last. I prefer this construction for lightweight footwear, since it conforms to the natural shape of the foot and is very flexible. Sliplasted shoes are not usually as stiff as board-lasted ones, though there may be a flexible plate similar to a lasting board between the cushioning midsole and the outsole. Some shoes have combination lasting—the front is sliplasted, but there is a half-board in the heel. This gives a flexible forefoot but a more rigid heel.

  The traditional sole stiffener is a half- or three-quarter-length steel shank, only half an inch or so wide, placed forward from the heel to give solidity to the rear of the foot as well as lateral stability and support to the arch while allowing the front of the foot to flex when walking. Full-length shanks are for rigid mountaineering boots, not for walking. Some boots combine a steel shank with a graded nylon insole.

  Many boots incorporate a midsole of a shock-absorbing material. This is usually EVA in lightweight footwear and heavier but much harder-wearing polyurethane or microporous rubber in heavier boots. These midsoles are often tapered wedges, thickest under the heel. They absorb shock well, and I wouldn’t consider footwear without them—the difference they make in how your feet feel at the end of a long day is startling. They are designed to protect against the shock of heel strike—the impact when your heel hits the ground—which jars the knees and lower back as well as the feet. Cushioning also is needed at the ball of the foot, and the best shock-absorbing wedges are quite thick under the forefoot as well as the heel.

  Some boots also have a stiffening and supportive synthetic plate under the cushioning midsole—this is a way to give some stiffness to a sliplasted shoe. Sometimes this plate—which is usually latticelike rather than solid—combines with the shock-absorbing midsole and the rand, cradling the foot and providing cushioning as well as good side-to-side support and stability. Even the heel counter and the toe box may be incorporated into these units.

  Outsoles

  This is the bit of the boot that determines whether you stay upright or skid all over the place. Once there were only a few outsole patterns, with the Vibram carbon-rubber Roccia and Montagna lug outsoles as the standard tread; now they are legion. Vibram has become a whole extended family of sole patterns in itself, and there are many others (Skywalk is one of the most common). Having tried a wide variety of these, I’ve concluded that any pattern of studs, bars, or other shapes seems to grip well on most terrain. The key is a pattern that bites into soft ground so that the shoe doesn’t slip and a sole made from soft enough rubber that when pressure is applied it grips rock and smooth surfaces by friction. I’ve had shoes with shiny outsoles that were just too hard to provide much friction; they were dangerous on wet pavement. Once the surface of the lugs had worn away, they gripped better. Note that no rubber sole, whatever the pattern or stickiness of the rubber, will grip on hard snow or ice. For that you need metal.

  Some footwear uses the “sticky rubber” that revolutionized rock-climbing footwear. Soles with this material are ideal for scrambling and difficult rocky terrain, but the sticky, soft rubber that grips well on rock and other hard, fairly smooth surfaces doesn’t bite into soft ground so well. It’s also not very durable. Harder rubbers grip better on mud and wet vegetation and also last longer, so these are used for most boot soles. Some treads combine soft and hard rubber so that the edges grip well on soft ground while the center has good friction. Others are designed with different patterns and rubber densities for downhill braking and traction and uphill traction and push-off. I can’t say I can tell any difference between these and traditional soles, but they sound good.

  The type of sole footwear has depends on its purpose. Soles with the deepest lugs are found on mountaineering boots, those with the shallowest on sandals and trail running shoes—though some sandals now have surprisingly deep lugs.

  Boot heel designs. Rounded (left) and right-angled (right).

  There has been some concern about the damage that heavily lugged soles do to soft ground, and some manufacturers have designed soles said to minimize this damage by not collecting debris in the tread. Studded soles seem to work best in this respect, but unless all your walking will be done on gentle trails, grip is the most important quality of outsoles. Grip should not be compromised, especially if you’re walking on steep, rugged terrain. Modern soles aren’t quite as damaging as traditional ones, since they tend not to have the 90-degree angles at the edges and heels that cut into the ground so deeply. Instead, the edges are rounded and canted.

  Many soles are made from a dual-density rubber—a soft upper layer for shock absorption and a hard outer layer for durability—and combine grip with cushioning.

  In stiff-soled boots you have to come down steep slopes on your heels, so square-cut heels are best. In flexible footwear you can put your feet flat on the ground so rounded heels are fine.

 
; Heavier outsoles with deeper treads should outlast lighter soles, though it’s hard to predict tread life. Wear depends on the ground surface—pavement wears out soles fastest, followed by rocks and scree. On soft forest duff, soles last forever. I have found that on long walks, lightweight soles last 800 to 1,000 miles, while the traditional Vibram Montagna lasts at least 1,250 miles. However, soft EVA midsoles last only about 500 miles (polyurethane lasts longer), so the life of the sole depends on more than the wear of the lugs.

  There is little controversy over outsole patterns, but the shape of the heel has generated heated discussions. Indeed, some designs have been blamed for fatal accidents. The debate is over the lack of a forward heel bar under the instep, together with a rounded heel (derived from running shoe outsoles) and how these features perform when descending steep slopes, especially wet, grassy ones. Traditional soles have a deep bar at the front of the heel and a right-angled rear edge, which their proponents say make descents safe. Rounded heel designs, they say, don’t allow you to dig in the back of the heel for grip or use the front bar to halt slips; instead, the sloping heel makes slipping more likely. To overcome these criticisms, some soles have deep serrations on the sloping heels and forward edges.

  After experimenting with different outsoles and observing other hikers, I’ve concluded that it all depends on how you walk downhill. If you use the back or sides of the heel for support, you’re more likely to slip in a boot with a smooth, sloping heel than in one with a serrated or square-cut edge. If you descend as I do, however, with your feet flat on the ground, pointing downhill, and your weight over your feet, heel design is irrelevant. I’ve descended long, steep slopes covered with slippery vegetation in smooth, sloping-heel footwear without slipping or feeling insecure. I’ve noticed too that many people who slip while descending steep slopes keep their boots angled across the slope and descend using the edges of the sole, without much contact with the ground. For this a stiff boot with a right-angled heel works best. Of course, if you descend hills flat-footed, you need fairly flexible footwear.

 

‹ Prev