(pp. 215–53)
Alexander, R. McN. 1976. Estimates of speeds of dinosaurs. Nature 261, 129–30
*Alexander, R. McN. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York Still an excellent introduction.
*Alexander, R. McN. 2006. Dinosaur biomechanics. Proceedings of the Royal Society B 273, 1849–55 The master speaks.
Bishop, P. J., Graham, D. F., Lamas, L. P., Hutchinson, J. R., Rubenson, J., Hancock, J. A., Wilson, R. S., Hocknull, S. A., Barrett, R. S., Lloyd, D. G., et al. 2018. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs. PLoS ONE 13, 0192172
Coombs, W. P., Jr. 1980. Swimming ability of carnivorous dinosaurs. Science 207, 1198–1200
Falkingham, P. L., and Gatesy, S. M. 2014. The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny. Proceedings of the National Academy of Sciences, U.S.A. 111, 18279–84
Galton, P. M. 1970. The posture of hadrosaurian dinosaurs. Journal of Paleontology 44, 464–73
Gatesy, S. M., Middleton, K. M., Jenkins, F. A., and Shubin, N. H. 1999. Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature 399, 141–44
*Gillette, G. G., and Lockley, M. G. (eds). 1989. Dinosaur tracks and traces. Indiana University Press, Bloomington; Cambridge University Press, Cambridge An overview and many case studies.
*Haines, T. 1999. Walking with dinosaurs: A natural history. BBC Books, London; DK, New York The producer of the series talks about animation methods and ensuring accuracy.
Heers, A. M., and Dial, K. P. 2015. Wings versus legs in the avian bauplan: Development and evolution of alternative locomotor strategies. Evolution 69, 305–20
Henderson, D. M. 2006. Burly gaits: Centers of mass, stability, and the trackways of sauropod dinosaurs. Journal of Vertebrate Paleontology 26, 907–21
Hutchinson, J. R., and Garcia, M. 2002. Tyrannosaurus was not a fast runner. Nature 415, 1018–21
Hutchinson, J. R., and Gatesy, S. M. 2006. Dinosaur locomotion: Beyond the bones. Nature 440, 292–94
Kubo, T., and Benton, M. J. 2009. Tetrapod postural shift estimated from Permian and Triassic trackways. Palaeontology 52, 1029–37 The switch from sprawlers to upright walkers across the Permian–Triassic mass extinction.
Lockley, M. G., Houck, K., and Prince, N. K. 1986. North America’s largest dinosaur tracksite: Implications for Morrison Formation paleoecology. Geological Society of America, Bulletin 97, 1163–76
Mickelson, D., King, M., Getty, P., and Mickelson, K. 2006. Subaqueous tetrapod swim tracks from the middle Jurassic Bighorn Canyon National Recreation Area (BCNRA), Wyoming, USA. New Mexico Museum of Natural History and Science Bulletin 34 Summary only: the full paper has not been published.
*Ostrom, J. H. 1979. Bird flight: How did it begin? American Scientist 67, 46–56 The classic ‘ground up’ view for the origin of bird flight.
Palmer, C. 2014. The aerodynamics of gliding flight and its application to the arboreal flight of the Chinese feathered dinosaur Microraptor. Biological Journal of the Linnean Society 113, 828–35
*Xu, X., Zhou, Z., Dudley, R., et al. 2014. An integrative approach to understanding bird origins. Science 346, 1253293 A current review of bird origins and the ‘trees down’ model for the origin of flight.
Chapter 9
Mass Extinction
(pp. 254–85)
*Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 The original proposal of impact.
*Alvarez, W. 2008. T. rex and the crater of doom, 2nd edition. Princeton University Press, Princeton Arguably the best title ever for a popular science book – Walter Alvarez tells the whole story.
Benton, M. J. 1990. Scientific methodologies in collision: The history of the study of the extinction of the dinosaurs. Evolutionary Biology 24, 371–424 The 100 top reasons for dinosaur extinction.
Field, D. J., Bercovici, A., Berv, J. S., Dunn, R. E., Fastovsky, D. E., Lyson, T. R., Vajda, V., and Gauthier, J. A. 2018. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology 28, 1825–31
Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, A., Jacobsen, S. B., and Boyton, W. V. 1991. Chicxulub crater – a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–71
Lyell, C. 1830–33. Principles of geology, being an attempt to explain the former changes of the Earth’s surface, by reference to causes now in operation, 3 vols. John Murray, London The classic expression of uniformitarianism.
MacLeod, K. G., Quinton, P. C., Sepúlveda, J., and Negra, M. H. 2018. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science 24, eaap8525
Maurrasse, F. J.-M. R., and Sen, G. 1991. Impacts, tsunamis, and the Haitian Cretaceous-Tertiary boundary layer. Science 252, 1690–93
Morgan, J., Warner, M., Brittan, J., Buffler, R., Camargo, A., Christeson, G., Dentons, P., Hildebrand, A., Hobbs, R., MacIntyre, H., Mackenzie, G., Maguires, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., and Snyders, D. 1997. Size and morphology of the Chicxulub impact crater. Nature 390, 472–76
Raup, D. M., and Sepkoski, J. J., Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences, U.S.A. 81, 801–05
Sakamoto, M., Benton, M. J., and Venditti, C. 2016. Dinosaurs in decline tens of millions of years before their final extinction. Proceedings of the National Academy of Sciences, U.S.A. 113, 5036–40
Slater, G. J. 201. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary. Methods in Ecology and Evolution 4, 734–44
Wolfe, J. A. 1991. Palaeobotanical evidence for a June ‘impact’ at the Cretaceous/Tertiary boundary. Nature 352, 420–23
Chapter 10
Afterword
(pp. 286–89)
Maddox, J. 1998. What remains to be discovered. The Free Press, New York; Macmillan, London
Oreskes, N., and Conway, E. M. 2010. Merchants of doubt. Bloomsbury, London and New York The misuse of science by scientists to make political points, especially by the former pro-smoking lobby, and currently by the climate-change deniers.
General books about dinosaurs
Benton, M. J. 2015. Vertebrate palaeontology, 4th edition. Wiley, New York and Oxford The standard textbook on the subject, putting dinosaurs in context of all other vertebrates.
Brett-Surman, M., Holtz, T., Jr., and Farlow, J. O. (eds). 2012. The complete dinosaur, 2nd edition. Indiana University Press, Bloomington Over 1000 pages of articles on every subject to do with dinosaurian discovery, evolution, and biology.
Brusatte, S. L. 2012. Dinosaur paleobiology. Wiley, New York and Oxford An excellent serious introduction to dinosaurs.
Brusatte, S. L. 2018. The rise and fall of the dinosaurs: the untold story of a lost world. Macmillan, New York and London The best recent narrative of the life of a dinosaur hunter.
Fastovsky, D. E., and Weishampel, D. B. 2016. Dinosaurs: a concise natural history, 3rd edition. Cambridge University Press, Cambridge The best standard textbook on dinosaurs.
Klein, N., Remes, K., Gee, C., and Sander, P. M. (eds). 2011. Biology of the sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington The most thorough consideration of the biology of the largest dinosaurs.
Naish, D., and Barrett, P. M. 2018. Dinosaurs: how they lived and evolved. Natural History Museum, London Dinosaurs in full colour – history, diversity, and palaeobiology.
Norell, M. A. 2019. The world of dinosaurs: the ultimate illustrated reference. University of Chicago Press, Chicago Collecting and studying dinosaurs, and with insights from the great work at the AMN
H.
Weishampel, D. B., Dodson, P., and Osmolska, H. (eds). 2004. Dinosauria, 2nd edition. University of California Press, Berkeley A few years old now, but the most comprehensive account of the diversity of dinosaurs.
White, S. 2012. Dinosaur art: the world’s greatest paleoart. Titan Books, New York An introduction to the amazing efforts of artists to reconstruct the dinosaurs.
Illustration Credits
© 2012–2018 SpinoInWonderland pl. II; Aafje van de Hulsbeek, Philpot Education (www.philpoteducation.com/support/biology) 129; Albanian222 181; © American Museum of Natural History (AMNH), New York/D. Finnin 167; © Anne Burgess 85; Ballista 155; © BBC Worldwide 251; Beneski Museum of Natural History, Amherst College, The Trustees of Amherst College 224–25; Christian Jegou Publiphoto Diffusion/Science Photo Library pl. III; Chung-tat Cheung pl. VII; Conty 238; Courtesy Daniel J. Field 278–79, 280; Courtesy David Button and Emily Rayfield pl. IX; Courtesy Diane Scott, University of Toronto at Mississauga 161; Courtesy Emily Rayfield 19, 190, 193, pl. X; Courtesy Greg Erickson 198, pl. XVIII; Courtesy Hammacher Schlemmer 237b; Courtesy James St. John 240; Courtesy John Hutchinson 216b, 232a, 232b; Courtesy Lida Xing pl. VI; Courtesy of the Peabody Museum of Natural History, Yale University, peabody.yale.edu. Photography by William K. Sacco 111a, 111b; Courtesy Peter Galton 221; Courtesy Stephen Gatesy 227; Darren Naish/Tetrapod Zoology 244; David A. Hardy/Science Photo Library pl. XIXa; David W. E. Hone, Helmut Tischlinger, Xing Xu, Fucheng Zhang 120; DinosaurManZT2 250; D. Van Ravenswaay/Science Photo Library pl. XIXb; George Nibbs 219a; Gideon Mantell 187; H. Zell pl. IV; James Robins pl. V(b)a; Jerzy Dzik and http://ikonoteka.paleo.pan.pl 32; Joseph Wolf 150a; © Juan Manuel Borrero/naturepl.com 127; Karen Chin 195; Kimberley E.J. Chapelle & Jonah N. Choiniere pls XVI, XVII; Klaus Ebel, after R. Bird 242, 243; Kretschmer 235; Lakehead Region Conservation Authority, Thunder Bay 267; Lawrence Berkeley National Laboratory, US Government 260; Library of Congress, Prints & Photographs Division, Washington, D.C. [LC-DIG-ggbain-36570] 12; Lloyd et al/Royal Society pl. VIII; Mario Modesto, adapted from Mollwollfumble 57; Martin Brasier, Geological Society of London pl. XI; Martin Sander 117; Mary Buckland, née Morland 186; Maull & Polyblank 108a; © Michael DiGiorgio pl. V(a)a; Michael J. Benton 26, 91, 92, 93, 94, 95, 96a, 96b, 255; Nature Picture Library/Alamy Stock Photo 223; O. Louis Mazzatenta/National Geographic/Getty Images 144; Ovulator pl. XIV; Percy Allen 74; Peter Bull Studio © Thames & Hudson Ltd, London 21, 24, 27, 30–31, 36, 37, 38, 41, 42, 48, 56, 60–61, 62–63, 66–67, 70, 72–73, 75, 80–81, 82, 88–89, 90, 102–3, 112–13, 122–23, 140, 146–47, 150b, 157, 162–63, 164–65, 168–69, 171, 172, 173, 176–77, 178–79, 182–83, 188–89, 200, 202–3, 206–7, 208–9, 210–11, 212, 228, 230, 233, 236–37a, 239, 241, 246, 261, 263, 265, 270–71, 272–73, 282–83; Petter Bøckman 107; Philcha 222; Photo by G. Poinar 137; Qi Zhao pl. XV; Quercus Books pl. I; Robert Plot, Natural History of Oxfordshire, 1677 65; Sam/Olai Ose/Skjaervoy from Zhangjiagang 119; Samuel Griswold Goodrich 219b; Science History Images/Alamy Stock Photo 220; © 2013, Springer Nature pl. XIII; Stuart Kearns, University of Bristol 8, pls V(a)b, V(b)b; T. J. Blackwell 268; Trish Sloan © Australian Age of Dinosaurs 98a; University of Bristol 98b, 101; Wellcome Collection, London 115; WitmerLab at Ohio University pl. XII; © Zoological Society of London 216a
Index
All page numbers refer to the 2019 print edition.
Page numbers in italics refer to illustrations; colour plates (numbered I–XIX) are listed at the end of relevant entries.
3D photogrammetry 93
A
Abel, Othenio 180
acid rain 33, 34, 40, 64, 268, 280
Adamantina Formation, Argentina 201–4, 202–3, 205
Advanced Cell Technology (ACT) 149
age
of dinosaurs 174
of skeletons 155
Albertosaurus 170, 171
Alexander, R. McNeill 215, 216, 218, 228–29, 234, 252
Allen, Percy 73
alligators 118, 164–65, 194
Allosaurus 49, 121, 188
animated skin of 250
diet 206
fact file 188–89
feeding mechanisms 186–88, 190–91, 193, 193
medullary bone 145
Morrison Formation 69, 71
movement 248
skulls 17–18, X
teeth and bite force 188, 189, 192, 196
Alvarez, Luis 259–62, 260, 264, 267, 285, 286
Alvarez, Walter 259, 260, 261–62, 264
amber
dinosaurs preserved in 131–32, VI
extracting DNA from fossils in 136, 137
American Museum of Natural History (AMNH) 54, 156, 166, 243
American National Science Foundation 52
Amherst College Museum, Connecticut 223, 224–25, 227
Amphicoelias 206
analogues, modern 16
Anatosaurus 221, 221
Anchiornis 68–69, 70, V
fact file 70
feathers 125, 126
flight 245
footprints 224–25, 225
angiosperms 78–79
animation 249–52, 251
Ankylosaurus 65, 79, 272
extinction 276
fact file 272–73
Hell Creek Formation 270
use of arms and legs 236
Anning, Mary 195
apatite 142
Apatosaurus 206
Archaeopteryx 110, 112, IV
as ‘missing link’ fossil 114, 121
fact file 112–13
flight 114, 124, 247
Richard Owen and 111, 114
skeleton found at Solnhofen 111, 277
archosauromorphs 35–36, 37
archosaurs 16, 21–22, 35, 39, 56
Armadillosuchus 201
Asaro, Frank 259
Asilisaurus 32–33
asteroid impact 254–69, 275–76, 280, 281, 286–87, XIX
Attenborough, David 98, 213
B
Bakker, Bob 109–10, 115, 126
asteroid impact and extinction 262
Deinonychus 110, 111, 221, 244–45
dinosaurs as warm-blooded creatures 109, 116, 117
modern birds as dinosaurs 110
speed of dinosaurs 230
validity of Owen’s Dinosauria 57, 59
Baron, Matt 80–83
Barosaurus 206
Barreirosuchus 201
Barrett, Paul 80–83
Baryonyx 193
Bates, Karl 192
Bayesian statistical methods 273, 275
BBC
Horizon 229, 264–65
Walking with Dinosaurs 249–52, 251
beetles 78, 139, 204
Beloc, Haiti 265–66, 265
Bernard Price Palaeontological Institute 160, 163
Bernardi, Massimo 43, 46
biodiversity, documenting 52
bioinformatics 52
bipedal dinosaurs
arms and legs 235–40
early images of 219–21
movement and posture 221–22, 222, 249
speed 228
Bird, Roland T. 242–43
birds 145
brains 129
breathing 118
eggs 155, 158, 159, 166
evolution of 277, 278–79, 279–81, 280
feathers 125–26, 127
flight 244, 247, 248
gastroliths 194
growth 174
identifying ancestral genetic sequences 151–52
intelligence 128
as living dinosaurs 110–15, 118, 120–21, 124, 132
and the mass extinction 277–81
medullary bone 143, 145
Mesozoic birds from China 118–24
movement 234
sexual selection 126
using feet to hold prey down 235, 235
bite force 191–94
blood, identifying dinosaur 141–43
Bonaparte, José 2
39
bones 99
age of 155
bone histology 116–18, 119
bone remodelling 116–17
casting 100
composition 142
excavating from rock 87–99, 105
extracting blood from 141–42
first found 65
first illustrated 65
growth lines 116, 117, 154–55, 170, 172–73, 184
how dinosaurs’ jaws worked 186
mapping 93–94
reconstructing 99–101
structures 170, XIII
Brachiosaurus 49, 69, 178–79
diet 206, 207–8
fact file 178–79
Morrison Formation 69
size 175
bracketing 15–17
brain size 128–30, XI, XII
breakpoint analysis 42, 43
breathing 118
Bristol City Museum 104
Bristol Dinosaur Project 101–4
British Museum, London 111, 114
Brontosaurus 69, 225
Brookes, Richard 65
Brown, Barnum 273
Brusatte, Steve 32, 36–37, 39
bubble plots 42, 43
Buckland, William 67, 195
Buckley, Michael 142
Burroughs, Edgar Rice, The Land that Time Forgot 134
Butler, Richard 32
Button, David 208, 213
C
Camarasaurus 175, 206, 208–9, 209, 213, IX
Cano, Raúl 136
Carcharodontosaurus 196
Carnegie, Andrew 211
Carnian Pluvial Episode 40, 42, 43, 45, 46, 50
carnivores 201
see also individual dinosaurs
Carnotaurus 201, 238, 239, 240
fact file 239
carotenoids 124
cartilage 142
Caudipteryx 121, 123
fact file 123
Centrosaurus 87, 88
fact file 88–89
ceratopsians 79, 143, 156
diversity of 272, 275
use of arms and legs 236
Ceratosaurus 69, 71, 187, 206
Cetiosaurus 57, 66
Chapman Andrews, Roy 156, 166
Charig, Alan 22–23, 34, 39
Chasmosaurus 87
Chen, Pei-ji 121
Chicxulub crater, Mexico 264–68, 267, 285, 286
Chin, Karen 195, 204
China
Dinosaurs Rediscovered Page 27