The Deadly Dinner Party: and Other Medical Detective Stories

Home > Other > The Deadly Dinner Party: and Other Medical Detective Stories > Page 14
The Deadly Dinner Party: and Other Medical Detective Stories Page 14

by Dr. Jonathan A. Edlow M. D.


  The description Harris gave remains remarkably accurate. He wrote:

  There is always a latent period, often of a few hours between the original exposure to the fume and the development of symptoms. People who are unaware of the hazard sometimes think that they are developing a cold or influenza, and then to attribute their symptoms to this, especially as the illness may not start until they have finished work and gone home. The rapid recovery tends to confirm their belief; hence, it is not uncommon for employees not to seek assistance until they have had more than one attack.

  The first symptom is a sense of discomfort in the chest, especially on taking a deep breath. This may be a feeling of irritation or oppression behind the sternum, but is never severe enough to warrant the words “pain” or “constriction” and often the patient has some difficulty in describing it. The patient may or may not develop a dry irritating cough, which becomes worse with the gradual increase of soreness in the chest.

  He went on to say: “Physical signs are notable for their evanescence or complete absence. . . . An acute attack subsides quickly, and within a day or two at the most, the patient has completely recovered.”

  Dr. Harris went on to describe two clinical cases of polymer-fume fever and referenced two others described from a doctor associated with the DuPont chemical company. He pursued the matter further by doing some experiments on rats. He exposed these laboratory animals to PTFE in order to further elucidate the cause of the symptoms. The results of those experiments showed that temperature was a critical factor. At temperatures below 570 degrees F, the polymer seemed stable and did not emit any of the toxic fumes.

  This was not the first time the fumes from an industrial material were found to be the culprit in human disease. Metal-fume fever was first described by a Dr. Potissier in 1822. Brass workers developed similar symptoms, leading to the terms “brass founders’ ague” and “brass fever.” Many of these syndromes related to inhalation of microscopic particles of the oxides of various metals, including copper, zinc, magnesium, and many others. When these metals are being welded (such as in ship building) or melted or smelted, particles thirty times smaller than a single red blood cell are released into the air. When workers breathe this material into their lungs, they can develop the same symptoms that George Melville and his co-workers had. In these older reports, some patients had fevers so high as to suggest the diagnosis of malaria.

  In spite of this long and colorful history, Peters still had two big problems with the otherwise logical hypothesis that the polymer was causing the illnesses. First, not all of the workers exposed to the polymer got sick. And, more important, it is not the polymer itself that causes the syndrome; it is the fumes produced when the polymer is heated above 570 degrees. The highest recorded temperature in the crushed velvet manufacturing process was 330 degrees.

  “So we were sort of stuck,” recalls Peters. It kept coming back to the same question: Why did some of the workers have it, and others not? When Peters reanalyzed the information from the interviews, the answer was as simple as it was (at least in retrospect) obvious. “I got lucky. Because of the prominent respiratory symptoms, we included a question on the questionnaire about cigarette smoking. That turned out to be the clue in the end.”

  Most of the workers who developed polymer-fume fever were smokers. Melville smoked a pipe. Employees using the polymer handled and adjusted the cloth as it was dipped, rolled, squeezed, and cured, thus contaminating their hands with the PTFE. The flow of work also allowed for frequent breaks, during which the workers often smoked cigarettes without first washing their hands. The association of cigarette smoking and polymer-fume fever had been made before. In 1963, a report making this connection came out in the Transactions of the Association of Industrial Medical Officers, an arcane publication that would not have been available to the average physician.

  In 1965, another, much larger report of an epidemic of thirty-six workers at a large industrial plant in Kansas was reported in the (far more prominent) Journal of the American Medical Association. The details in this case had a number of similarities to the goings-on at Malden Mills. Workers in an assembly plant were affected—but not all of them. The start of the epidemic coincided with two changes in the work flow. The first involved the use of a new parting compound that used PTFE, and the second related to decreased ventilation in that area of the plant with the advent of a new air-conditioning unit. Most of the sick workers smoked, and the remainder of them were using an air gun that heated the air to 750 degrees Fahrenheit, well above the critical temperature at which PTFE becomes toxic. Fixing the ventilation and forbidding smoking in the plant were the only steps required to halt the outbreak.

  In 1972, other physicians published a report about the unusual case of a fifty-year-old woman with polymer-fume fever. She had more than forty attacks over a nine-month period before the true cause was established. She smoked a pack a day. A female co-worker who had the same exposure, but was a nonsmoker, remained well. So there was precedent in the medical literature for the connection between polymer-fume fever and smoking.

  How hot could a cigarette be, though? After all, it doesn’t burn the smoker. One group of researchers found that the average temperature in the combustion zone of a cigarette is about 1620 degrees F—nearly three times the temperature required to produce toxic fumes from the polymer. But how much PTFE would be necessary on the fingers of the workers to produce enough of the fume to lead to illness? One study of human volunteers found that the disease can occur with as little as 0.4 milligrams of PTFE. Another researcher, R. J. Sherwood, discovered that a substantial concentration of fumes is achieved by smoking a cigarette contaminated with a piece of polymer the size of a grain of sand.

  Once the problem at the Lawrence textile mill was clearly defined, the solution proved quite simple. The workplace was designated a nosmoking area, and no one was allowed to smoke or eat without first washing his or her hands. No further cases of polymer-fume fever occurred.

  End of story, right?

  Not exactly.

  First of all, outbreaks of polymer-fume fever continued to crop up

  from time to time. Over a nine-month period from July 1985 to March 1986, three workers from a Mississippi sign and stamp manufacturing shop had repeated episodes of a severe “flu-like illness” with prominent muscle and back pain. The workers would develop these same symptoms a few times per week but never on weekends. Only the workers making rubber and metal stamps were affected.

  After months of this pattern, the company’s owner finally asked NIOSH to evaluate the situation. In a series of events remarkably similar to those found at Malden Mills, the investigators learned that the owners had recently made a change in the process. In July 1985, the company had started making its stamps using a new asbestos-free board for its molds. After the workers poured the rubber into the mold board, they baked the board in a small oven that reached 580 degrees F. But at the last step of the process, the rubber stamps tended to stick to the new board, so the workers started using a mold-release spray, to help the stamps come free from the board. The supplier of this spray, which included a fluorocarbon as a trace ingredient, did not include the possibility of polymer-fume fever in its safety sheet. As in previous outbreaks, as soon as the problem was clear, a simple solution was implemented and no further illness was reported.

  A second incident related to the nylon flock industry went beyond medicine and took on decidedly political and ethical overtones. In 1990, a man working for a company called Microfibers, Incorporated, saw his doctor in Ontario, Canada, because of shortness of breath and a cough. His specific job at Microfibers was making flock. He was ultimately diagnosed with interstitial lung disease, a relatively rare condition in which the lung becomes inflamed and can scar. This sometimes results in chronic breathing problems severe enough to require oxygen therapy twenty-four hours a day. When other workers at the same plant were similarly afflicted, and one nearly died of it, the Canadian government im
plemented changes to prevent the disease.

  Four years later, in November 1994, a textile worker at a Microfibers plant in Pawtucket, Rhode Island, developed similar symptoms and was also found to have interstitial lung disease. The patient was referred to an occupational health specialist, Dr. David Kern. He visited the plant and, contrary to the cooperative spirit at Malden Mills, he recalls, “At the door, we were greeted by the personnel director, who asked us to sign a trade secret confidentiality agreement.” Kern signed the document and began his investigation, which was similar in tactics to those used by Peters in the Malden Mills affair. He found nothing suspicious and concluded that this was likely not an occupational issue.

  But when a second worker from the same plant was referred to him about a year later, in January 1996, Kern began to rethink the issue. Finding two cases of a rare disease in patients who worked at the same plant suggested a relationship and a possible occupational cause. The company also requested a NIOSH investigation, and Kern launched a parallel inquiry. When Kern tested all of the 165 textile workers at the plant, he found that 7 of them had the same findings; the incidence of interstitial lung disease was an astonishing 50 times higher than that in the general population. This was big news, so in 1996, while these two investigations were ongoing, Kern planned to present some of the preliminary information as an abstract at the 1997 meeting of the American Thoracic Society.

  An abstract is usually a brief report of early work that is not quite ready to be formally published in a medical journal. Its purpose is to alert other doctors and scientists about preliminary findings. Sometimes doctors at professional meetings will read abstracts and find other researchers who are working on the same problem, and this can facilitate collaboration. It is such a standard academic practice that Kern was surprised when the textile company asked him not to submit the abstract. A company spokesman argued that the abstract included proprietary information and that it would therefore violate the confidentiality agreement that Kern had signed two years earlier. Kern was flabbergasted that an agreement he had signed in 1994 was being applied to an investigation that he had not even started until 1995.

  Once again, the nylon flock appeared to be the culprit. But unlike the transient symptoms that are seen with polymer-fume fever, this new group of patients seemed to have permanent damage to the lungs. He was concerned about the development of a previously unrecognized syndrome resulting in permanent damage to the lungs. Furthermore some cases resulted in severe lung damage; one patient had needed to be on a ventilator in the ICU and nearly died. Kern was also worried because this new syndrome was occurring in an industry with approximately twenty-five hundred employees in the United States and many thousands more worldwide. New cases were surfacing as more time elapsed and Kern investigated more thoroughly. Because the syndrome was almost certainly preventable, Kern wanted to broadcast it as loudly as possible.

  That is when the situation turned even uglier. Kern’s occupational health clinic was at Memorial Hospital in Pawtucket, and he maintained a faculty post at Brown University School of Medicine. Lawyers became involved. Brown University threatened to fire him. The hospital warned him that it might shut down his occupational health unit. Kern countersued the university, the hospital, and Microfibers, claiming that his rights under the Occupational Safety and Health Act had been violated. Kern’s friends and colleagues began a letter-writing campaign. One week after he presented his abstract in the spring of 1997, both the hospital and the university sent Kern letters informing him that his fiveyear contract would not be renewed. Numerous counterclaims were made. More than seventy occupational physicians supported Kern, in part referring to the history of asbestosis, another product of a toxic substance once thought to be safe. They invoked “the obligation to report.”

  In the end, Kern and colleagues published their findings in the Annals of Internal Medicine, and a new term was coined—flock worker’s lung. Their article, which appeared in 1998, described a cause of chronic interstitial lung disease that had never been previously reported. The paper detailed eight cases that were related not to the polymer PTFE but to the nylon fibers themselves, which, it turns out, can enter the respiratory tract and cause inflammation. The following year, NIOSH sponsored a workshop for clinicians dedicated to studying this new entity.

  The final episode involving flock exposure brings the story full circle. This one goes back to the same problem George Melville had— polymer-fume fever—and, remarkably enough, the same place, Malden Mills.

  Malden Mills continued to reinvent itself as a company. It went bankrupt in 1981, but the company came roaring back with a new synthetic fabric called Polarfleece, made from a polyester fiber that wicks moisture away from the body. In the 1980s and 1990s, the fabric and its second generation—Polartec—became immensely popular with various high-end outdoor clothing manufacturers. Demand for its imitation velvet fabric for home furnishings also grew, and the company emerged from bankruptcy in 1983. Business soared by 200 percent, and Malden Mills became a $3 billion company. By 1986, sales were so strong that the company began investing $10 million per year in state-of-the-art research, design, and production equipment to keep up with the evergrowing demand for its products. Such big-name outfits as Patagonia, Lands End, Eddie Bauer, L. L. Bean, and others were buying up as much fabric as Malden Mills could produce.

  In the 1990s, Malden Mills stood out as one of the few textile manufacturers that was able to survive the stringent environmental laws and high labor costs in Massachusetts. As if the company itself had a soul, it launched initiatives to protect the environment by building a water treatment plant to restore the Merrimack River systems around the company’s mills. It reduced the amount of chemicals necessary to manufacture its products. It worked to conserve energy and reduce waste. The company had an ever-growing international market for its products.

  Then on December 11, 1995, as Aaron Feuerstein was celebrating his seventieth birthday, an explosion rocked the plant and caused a fire that destroyed three of the nine buildings. Feuerstein, a grandson of the original founder and by this time the company’s CEO, vowed to rebuild. In a move that shocked many in the business world, he even continued to pay the out-of-work employees for as long as funds held out. The move sparked such notoriety that President Bill Clinton mentioned it in his State of the Union address in January 1996.

  Since then, the company has again been in bankruptcy and again emerged from it, in 2003, this time without the Feuerstein family at the helm. The Lawrence plant is home to about a thousand workers in the new century.

  But Malden Mills is still a plant, and as such it is no less vulnerable to industrial illnesses. The last part of the story shows the importance of institutional memory.

  “Several years after the outbreak of polymer-fume fever,” recalls Peters, “a few of us at Harvard had started a consulting firm to deal with health problems in industry, and we got a call one day from this same plant [Malden Mills], where workers were once again experiencing similar difficulties. There were different people working there now, and they had done something funny over the weekend. Somehow, they had gotten the polymer into the heating system. There was an odd weather pattern on the next Monday, so that wind was blowing from an unusual direction, forcing the exhaust from the heating system back into the building through the ventilation intakes.

  “There were a number of cases and, sure enough, they were all clustered around the ventilation intake ports. We solved this one by altering the ventilation system.” And since then, Malden Mills has not had any further problems with polymer-fume fever.

  9 The Case of the Wide-Eyed Boy

  Although Gary Setnik had been a specialist in emergency medicine for fifteen years, he’s still never sure what to expect. On any given day at Mount Auburn Hospital in Cambridge, Massachusetts, he may see a child with the sniffles, a teenager with a seizure, a grandmother with pneumonia, or an executive in cardiac arrest. As time passes, the details of many of those cases b
lur into one another.

  But doctors will recall the smallest details of some cases even years later.

  “In spite of the fact that you see thousands of patients, there are a very few cases that stand out as being so unusual and so rewarding that they become part of your foremost memories,” Setnik says, settling back in his leather chair in his Cambridge office to recall one of them. “And this is certainly one of those cases.

  “It was a cloudy Sunday afternoon in October, a few years ago, around 1985 or so. I very clearly remember going to the chart rack, picking up the record of the next patient, and being immediately struck by the information available.”

  The chart belonged to a ten-year-old boy I’ll call Shawn Matthews. A triage nurse, usually the first person to interact with a new patient in an emergency department, had already made some notations on Shawn’s chart. The young boy’s chief complaints, according to the nurse, were headache and blurred vision. She recorded his vital signs, which were remarkable only in that they were completely normal, and then pointed out that Shawn’s left pupil was markedly dilated. This was the information that Setnik had available at that moment.

  “Before I even stepped away from the chart rack,” recalls Setnik, the chairman of the department of emergency medicine at Mount Auburn, “I was considering all the possible causes of headache and dilated pupil. Most of them were bad. So it was with some urgency that I walked into the room and introduced myself. I can even recall the specific room; it was 11-R. Shawn was sitting on the examination table, with his parents and a younger sister clustered around. I instantly noticed the asymmetry of his pupils. The right one was normal, but the left one filled the entire iris, the colored part of the eye. Shawn appeared well, was breathing normally and didn’t seem to be in any pain. He was a little anxious, but no more so than any other ten-year-old whose parents had brought him to an emergency room.

 

‹ Prev