The Mammoth Book of Space Exploration and Disaster

Home > Other > The Mammoth Book of Space Exploration and Disaster > Page 45
The Mammoth Book of Space Exploration and Disaster Page 45

by Richard Russell Lawrence


  Carlos and Jean did the finishing touches, making sure my straps were tight, the emergency oxygen was plugged in and tested, and everything was good to go.

  After that, we all ran through a checkout of the communications system. Curt was talking back and forth with the launch control center at the Cape and mission control in Houston, which would assume control at liftoff. We went through intercom and radio checks. Everybody answered in order: the commander, the pilot, the three mission specialists, Chiaki as payload specialist one, and then me, “PS two, loud and clear.”

  At twenty minutes, the countdown stopped for the first of the two built-in holds, designed for last-minute catch-ups and adjustments. Then it resumed and ticked down to the second built-in hold at nine minutes. This one was supposed to last ten minutes, but it went on longer than anticipated because an alarm had gone off when the cabin pressure was brought up. When the countdown resumed, we breathed a collective sigh of relief. After that, Curt came on the intercom to say, “Okay, everybody, we’re going on silent cockpit.” At that point, you stayed off the loop unless you really had something to communicate. The next comments we’d make would be in orbit.

  But we all could hear Curt’s and Steve’s communications with the launch center and with Houston.

  At five minutes the countdown stopped again because two airplanes had entered the restricted area. We heard the irritation in Curt’s and Steve’s voices. How on earth could you get to this point and have airplanes in the area? Nobody knew how long the hold was going to be. The FAA should yank flight licenses over something like that because there’s no excuse for it.

  After a few minutes, the count resumed. As it went down, all I wanted was to get going.

  About six seconds from zero, the orbiter’s three main engines lit. I felt the shuddering and the resonance as they built toward full thrust. The shuttle bent as if it was starting to bow, then straightened. The push of the orbiter’s engines is straight up, but the center of gravity of the whole launch assembly, including the solid rocket booster engines and the external tank, is a point a few feet into the tank, so the assembly, held down by eight massive bolts, flexes in that direction.

  As it came back to vertical, the solids lit. We were going someplace. The shaking and the shuddering and the roar told us that. In rapid sequence the solids built up power, the explosive hold-down bolts were fired, and over seven million pounds of thrust pushed us up at 1.6 Gs.

  I hit the time on my knee and the one on my wristwatch. The wristwatch gave the mission elapsed time starting from launch, and would also count days. The timeline for all our activities, including research experiments, required us to know the day as well as the hour and minute from launch.

  The vehicle was moving at a hundred miles an hour by the time it cleared the launch tower. It was accelerating far more rapidly than the Atlas, and its shaking and vibration were much more pronounced.

  Max Q, and the worst shaking and shuddering, came about sixty seconds after launch. The main engines throttled back automatically to keep the vehicle within its structural limits. Then came the voice from the ground, “Go at throttle up,” which meant we were through the area of maximum aerodynamic pressure and the main engines had returned to full throttle.

  The solid-fuel boosters run for two minutes and six seconds. Everyone looks forward to the moment they burn out and detach. They’re the one thing in the launch vehicle you have absolutely no control over. You can’t throttle them back, you can’t shut them off, and you can’t detach them. There are no emergency procedures if anything goes wrong. You just hope everything keeps working right. I had told Annie and Dave and Lyn, who still worried, that when the solids were gone we were home free.

  They burned out. I felt a sudden loss of thrust, then heard a bang like a rifle shot as the explosive bolts holding them to the external tank fired and detached them. They would cartwheel down until their parachutes deployed to bring them down for retrieval and reuse.

  With the solids gone, the ride eased out. The orbiter’s main engines run smoothly, and you ride into orbit accelerating as the fuel in the external tank is burned, making the vehicle lighter. You hit three Gs just before you reach orbit.

  Then another bang, more muffled than the first, signaled that the spent external tank was jettisoned. It would burn up reentering the atmosphere over the Indian Ocean. After that, we were operating on the fuel that was stored within the orbiter itself for the final sprint to orbital velocity.

  Once we hit orbit and had main engine cutoff, we got busy right away. Chiaki and I were responsible for getting people out of their suits and stowing the suits and all the equipment on them into net bags, color-coded for each crew member. That was more complicated than it sounds. Each item had to wind up in the bags in the order in which it would be removed as we resuited for reentry at the end of the flight.

  I took my helmet off and put it down, and it came floating right up past my face. It moved much more than I anticipated. I had to stick its communications cord under my legs to hold it down until I could get a bag to put it in. Stray gloves and equipment were floating around. Even releasing my seat harness, I found I had to be careful because I had a tendency to take off. Foot loops kept my feet on the floor and bungee cords against the front of the lockers helped me corral stuff floating by. I kept my suit on while Chiaki and I helped the others out of theirs, wrapping my legs around the seats for leverage. By the time I finally got out of my suit, I had worked up a pretty good sweat.

  We stowed the bagged suits and equipment temporarily in the sleep stations until we could transfer them later to the airlock that led to the SpaceHab. Then we folded and detached the seats, including the two rear seats from the flight deck and got them out of the way. It was a lot easier than on the ground, where they weighed seventy pounds. Now the flick of a fingertip would move them where they had to go.

  Because everything floated, Velcro, duct tape, and bungee cords were invaluable. Things had to be held down, and those were about the only devices to do it.

  Floating around took a little getting used to. When I moved across the mid-deck or through the twenty-five-foot tunnel leading to SpaceHab back in the payload bay, just a tiny amount of pressure was enough to start the process. Pushing off without the right alignment could send me spinning. The tunnel to SpaceHab was only three feet wide, and I learned to adjust my course as I floated through it. Reaching for items that were hovering nearby, sometimes I bumped them and then had to chase them down. I learned right away not to push too hard off the wall or to reach for things too fast. And all the switch plates had guards that prevented us from turning something on or off inadvertently when we bounced off the walls.

  One of my main concerns was whether I was going to be sick. Space sickness affects about a fifth of astronauts initially. While I had felt fine during my Mercury flight, I didn’t know how I would react in the shuttle. I had Phenergan, which many astronauts use before going up, and I adapted rapidly. I couldn’t have felt better, and three hours into the flight I reprised an old line in my first transmission from orbit: “Zero G and I feel fine.”

  For the first hour of the flight Chiaki and I worked hard down on the mid-deck, so we weren’t able to see out of a window. Everyone except Curt had come down from the flight deck. He had to perform the orbital maneuvering system (OMS) burn that put us from an elliptical orbit into a circular one. He established the shuttle in a tail-down attitude, with radiator surfaces of the payload bay doors open to dissipate heat, and by then he was ready to take his suit off and get into other clothes. When he went back up, I followed to look out. By that time, we had made a full circuit and were coming back into daylight again over the Pacific.

  Discovery was at an orbital height of 300 nautical miles, or about 348 statute miles, the highest continuous orbit for a shuttle mission. It gave us a rare view for a shuttle flight. We were more than twice as high as I’d been in Friendship 7, and I could see entire weather patterns beneath me even better. On
ce again I looked out at the curve of the horizon and the bright blue band that is our atmosphere – the thin film of air that makes life on Earth possible – and I realized how much I’d missed being in space all those years.

  Curt described it when he radioed to Houston, “Let the record show that John has a smile on his face and it goes from one ear to the other and we haven’t been able to remove it yet.”

  I wanted to do a good job. We were at the start of a nine-day mission and had come through the first phase with things well organized, but there wasn’t any time to waste. The timeline called for starting a number of experiments immediately after we entered orbit.

  Scott and I floated back through the tube to SpaceHab to activate several experiments that held the potential to improve medical treatments on a wide range of fronts. The BioDyn payload was a commercial bioreactor that contained work in several areas: protein research that could aid in ending transplant rejection; an investigation into cell aging, seeking tools to fight various geriatric diseases that cause immune-system breakdown; improved ways of making microscopic capsules to deliver drugs directly to the site of a disease; tissue engineering aimed at making synthetic bone to improve dental implants, hip replacements, and bone grafts; and heart patches to replace damaged heart muscles.

  Then I moved on to ADSEP, part of a series of experiments in separating and purifying biological materials in microgravity with aims such as producing genetically engineered hemoglobin that may eventually replace human blood. Starting ADSEP meant moving its various modules from storage into active bays and setting switches and turning dials according to detailed instructions in our flight-data files. These experiments were only a fraction of the science we would do during our nine days on board.

  By the time we returned to the mid-deck, I was hungry. It was then five and a half hours into the flight, longer than the total flight of Friendship 7. I hadn’t eaten since breakfast, and hadn’t had time to grab a snack from the pantry, a shallow drawer near the mid-deck ceiling that was loaded from the bottom, like a kitchen drawer at home but upside-down, with the contents secured with netting.

  Eating involved first injecting hot or cold water into rehydratable packets, then waiting three to five minutes. As it absorbs the water, the food thickens and won’t float out of the packet. We all carried scissors for cutting the packets open as part of our regular equipment. The packets had small Velcro patches on their surfaces, so you could eat anywhere and stick your meal onto one of the orbiter’s hundreds of Velcro strips if you wanted to put it down.

  I ate a full meal, starting with a shrimp cocktail and moving on through macaroni and cheese, peanut butter and jelly in a tortilla, dried apricots, banana pudding, and apple cider. After eating, it was time to prepare for sleep. We had been up since six that morning, and working in space since mid afternoon. The schedule called for a two-hour presleep period that gave us time to wash up, send E-mails, review the next day’s work, or gaze back at Earth from one of the windows. A few of the crew put on headphones and listened to music. We all had the opportunity to bring a selection of compact discs along. My choices included music by Henry Mancini, Peter Nero, and Andy Williams. Peter and Andy are good friends, and Annie and I had been especially close to Hank and Ginny Mancini, visiting and vacationing with them on many occasions before Hank died in 1994. I also took along a disc of barbershop chorus harmonies by the champion Alexandria Harmonizers, a taste I inherited from my dad. After that, the entire crew slept. Space days and nights lasted the same forty-five minutes I had experienced in Friendship 7, and since the shuttle orbited through five of these days and nights during an eight-hour sleep period, its windows and portholes were shaded while we slept. Chiak and I bedded down in our sleeping bags in two of the sleep stations. Steve Robinson took another, and we reserved the fourth in the tier for storage. It was like being tucked into a long pine box with a sliding panel for a door.

  The rest of the crew hooked their sleeping bags to the walls or ceilings wherever they pleased. Curt slept on the deck, Steve Lindsey in the mid-deck, and Scott and Pedro found space back in SpaceHab or the tunnel.

  I used a block of foam for a pillow, even though my head and the rest of me, for that matter, needed no support in weightlessness. It was just a way of making sleep in space familiar, even though it meant bringing the pillow to my head instead of putting my head down on the pillow.

  When we awoke, in the so-called postsleep period during which we washed with foamless soap and brushed our teeth with foamless toothpaste, I noticed that we all had fat faces. This resulted from the fluid shift that weightlessness causes. The body senses it no longer needs the same fluid volume it has in a gravity environment, and you eliminate the excess through urination. The fluid that’s left moves from the abdomen and legs into the upper body and face. We all looked comical, Steve Robinson even more so because his hair was standing up like Dagwood Bumstead’s. But the facial effect isn’t permanent; it would recede in another day or two. Steve’s hair, however, would keep floating.

  At breakfast, I put into my mouth the largest, fattest, longest jelly bean anybody ever tried to eat – and I wasn’t allowed to chew it up. It was the thermometer pill that transmitted core body temperature readings to an external monitor. The readings would constantly chart fluctuations in my body temperature.

  After another day of work, meals, and a sleep period, day three began with the first of my orbital bloodlettings. Scott, as the flight doctor, took the almost daily blood draws used for the protein turnover, immunology, and blood chemistry studies for which Pedro and I were subjects. Each draw produced two samples, one that I would analyze with an in-flight blood analyzer, another that I would separate by running through a centrifuge and freeze for later analysis. I attached the centrifuge to the ceiling with duct tape. The centrifuge spun at 3,000 rpm, and once when I tried to move it off its axis of rotation I found this was impossible. Its torque was enough to send me spinning.

  I’d discovered on the ground that a semipermanent intravenous catheter to supply the blood had proven too uncomfortable after a full day’s activities, so I decided I’d rather take the needle sticks. Scott became my Count Dracula after he floated in my direction for a blood draw wearing a set of plastic Halloween fangs. By a few days into the mission, he started grinning whenever he came my way with the syringe – or maybe it was just my imagination that he got to look more maniacal than ever.

  The protein turnover study, the mission’s experiment in muscle loss and rebuilding for which I was a prime subject, required me to take alanine pills and histidine injections several times during the flight, just as I had in preflight testing. The researchers would compare the findings with the baseline studies done back then, and also with on-Earth readings taken after the flight.

  Night four of the mission saw me and Chiaki rigged up in our head nets and instrumented vests. The twenty-one leads from the apparatus fed into boxes we wore on our waists, where the information was recorded for later analysis. We repeated everything the next night. These procedures, too, were bracketed by blood draws and urine samples, and were followed by cognition testing.

  Sleeping with the elaborate head net and vest turned out to be easier in orbit than on the ground, where the electrode leads were uncomfortable. Imagine sleeping with a dozen buttons over half an inch thick stuck on your head that you feel every time you roll over. Weightlessness improved the irritating pressure.

  On night six I donned a Holter heart monitor that I wore for twenty-four hours to provide a constant electrocardiogram. Anomalies in heart function in some of the other astronauts during space flight made NASA doctors decide to look at the action in a seventy-seven-year-old’s heart.

  All the while, I kept track of other experiments back in SpaceHab and on the mid-deck. The one that fascinated me most was Aerogel, a superthin, light, translucent substance with marvelous insulating qualities – a microscopic layer insulates as well as thirty thermal windows. It was my job to activate it si
mply by turning several switches. It’s thought that manufacturing Aerogel in microgravity might solve the problem that keeps it from being in common use on Earth. So far, it’s been impossible to make it as clear as glass.

  On nights seven and eight Chiaki and I put the sleep nets and vests on again for two more sets of readings.

  The Spartan satellite we were to deploy was our biggest payload, and the reason for our high orbit. It weighed a ton and a half, and was designed to photograph the sun’s corona and the effects of solar winds from outside Earth’s atmosphere. Solar winds produce interference that affects communications, electrical grids, and electronics on Earth, an effect that is heightened during times of high solar activity.

  On the third day of the flight, Steve Robinson took the controls of the fifty-foot robot arm and maneuvered to connect with the Spartan, lifting it out of the payload bay and away from the orbiter. This was a delicate operation, requiring great care.

  Once the Spartan was on its own, Curt used the orbital maneuvering system to move away from the satellite. The satellite would orbit independently for two days, taking pictures, until Steve retrieved it again on day six. To accomplish this retrieval, Curt maneuvered the orbiter to within a few feet of the Spartan, a flawless rendezvous that put Steve in a perfect position to bring the Spartan back on board. I was in the SpaceHab with the best view in the house as he nestled Spartan gently back into its cradle.

  On November 3 I briefly donned my political hat. It was the first time in years I didn’t go to the polls on Election Day. I and the rest of the American crew had filed absentee ballots – but I broadcast my normal Election Day get-out-vote message to the voters back home.

  The next night, Curt, Steve Lindsey, and I did a live shot with Jay Leno on The Tonight Show. Curt was a big Jay Leno fan – we all were, but he really shone. He spoofed me and California drivers, and even brought the comedian up short after Leno asked him what we could see from orbit. “Well, Jay,” Curt said, “sometimes, if the lighting is good we can see the Great Wall of China, but we just flew over the Hawaiian Islands and we saw that. And Baja California. You can see the pyramids from space, and sometimes rivers and big airports. And actually, Jay, every time we fly by California we can see your chin.”

 

‹ Prev