Lost Technologies of Ancient Egypt: Advanced Engineering in the Temples of the Pharaohs

Home > Other > Lost Technologies of Ancient Egypt: Advanced Engineering in the Temples of the Pharaohs > Page 10
Lost Technologies of Ancient Egypt: Advanced Engineering in the Temples of the Pharaohs Page 10

by Christopher Dunn


  Yet even if we ignore the functionality of a product, its external appeal still speaks of technologies that are employed in its creation. We probably have, within arms length, numerous examples of high technology. A soda can or a water bottle exhibit evidence of some of the processes necessary to make them. The roundness and uniformity of a drink container clearly indicates the use of a lathe. By studying a water-bottle top, we can discern the action of an injection mold that, when separating from the plastic, has to turn slightly in order to clear the helical screw threads. Examine your cell phone and wonder how such a product came to be. It is a perfect example of science and technology as well as manufacturing excellence. The book you are now holding in your hands came into existence through the function of machines—through wonderful examples of manufacturing precision that have evolved over the centuries.

  RAMSES’ SYMBOL

  The Temple of Amun Mut Khonsu has inspired philosophers to try to understand the symbolism behind its walls. R. A. Schwaller de Lubicz discerned a structure that by its design and dimensions symbolized a connection with the cosmos. It is a structure that conveys principles of harmony found in music and art. The Golden Ratio and dimensions of harmonic intervals are encoded in the walls and columns through their placement and the application of reliefs. Schwaller de Lubicz stressed that the ancient Egyptians had a sacred science in which there was no distinction between the material and the spiritual. They believed both worked in harmony.

  For me, the symbolism in the temple was that the statues of Ramses reflected the state of the art that was present at the time they were created. The question, therefore, is this: What minimum requirements must be met to produce a statue such as those of Ramses? To answer this question, we first must consider the most difficult tasks to accomplish, both in design and execution—perhaps, re-creating the head and replicating its geometry and precision. Once we have decided how this could be done, knowledge of the production of the rest of the body will follow. To re-create the head, we would have to design and build a means of mirroring one side of the face in order to create the other. Perhaps we could create a model and a pantograph-type device with a stylus that could follow the contours of a model while cutting the granite. That may solve how the granite was cut, but then we are still left with how the model was made to such exacting standards.

  The statues of Ramses are exact. Using computer graphics and comparing the geometry of one side of the crown and head with the other and also with drafting elements such as rectangles and circles, it becomes clear that these statues must have been cut with the assistance of mechanical devices that caused the cutting tool to move along predetermined boundaries to produce an accurate representation in granite of the specific design. The only remaining question: To what quantifiable measure does the right side of the face vary with the left? In other words, after further analysis using laser scanning equipment and comparing both sides, to what extent will they vary?

  Figures 3.19 and 3.20 illustrate two-dimensional grids that would produce in three dimensions a point cloud—that is, every point on the right side of the face would have an identical point on the left side of the face. We assume a point lies where each horizontal line on the grid crosses a vertical line. This point is projected on the contour of the features of the face using Cartesian coordinates. When the tool has finished cutting, with regard to the jawline, we can see a perfect radius in the two-dimensional view and, creating that radius, a curve moving in three dimensions.

  Figure 3.20 represents a simple cross section of the Ramses head at the tip of the nose, the x, y, z zero point as identified in figure 3.19 and figure 3.20. With the nose now turned up, the z axis is now vertical and the y axis would be represented by a line moving away from the observer and graphically represented as a dot. In other words, the head has been rotated 90 degrees around the x axis seen in figure 3.19, and a vertical flat plane has been established through the tip of the nose. The profile was created by drawing the right side, then copying the profile in mirror image. Sectioning the head in this way, in 1-inch increments along the y axis, would result in many different profiles and an infinite number of profiles in between. These are the constraints we are faced with when we attempt to understand how the head of the statue was designed. We can only wonder at how these profiles were applied to granite.

  Figure 3.19. Charting Ramses’ face

  Figure 3.20. Cross section

  Historically, the quality of products has improved over time, and consumers of those products—you and I—would not tolerate the quality that was commonplace even fifty years ago. Some manufacturers have gone out of business by not being able to improve operations enough to compete with higher-quality and cheaper products. If we draw a parallel between the precision of the Ramses statues and the precision of modern products, we are faced with Egyptian artifacts that conformed to specific standards of design and measure in their world. In other words, the Ramses statues had to have received similar attention with respect to geometry and exactness as the automobile in your driveway. In fact, without receiving such attention, they could not have been made.

  The questions we must ask the Ramses statues are these: “What do you truly represent? What tools did your maker have to allow him or her to create you?” It is one thing to draw a circle on paper, but it demands extraordinary attention to define in granite a circle that moves along a third axis but that, when viewed in two dimensions, is a perfect radius. We have the technology to do it today—but what may have existed in ancient Egypt? Besides Ramses’ head, what other indications are there that Egyptians in a long-past epoch had similar advanced technology when all we have found in the archaeological record are simple tools? Is there evidence of such accuracy elsewhere in Egypt? What conclusions can we draw from other temples? Or is Luxor an anomaly and a miracle of superhuman touch guided by the gods? This is not an uncommon conclusion. It is often reached by many a confounded visitor to the miracle that is the Temple of Amun Mut Khonsu.

  THE COSMIC EGG

  Proverbs were an important part of the ancient religion of Egypt. A concept that was burned into the Egyptian philosophy was “know thyself.” Ancient Egyptians were reminded of the spiritual aspect of this concept when they visited their temples—that is, the divine essence of the Creator and the heavens was encoded within them. The Egyptians’ heart was their temple, and all the Egyptians needed to learn about the universe could be found there. The expression was inscribed on the temple walls, and the ancient Egyptians also took it with them to the afterlife by having it inscribed in their tombs: “The kingdom of heaven is within you; and whosoever shall know himself shall find it.”

  Figure 3.21. Ramses’ egg

  4

  The Shadows of Karnak

  We read the past by the light of the present, and the forms vary as the shadows fall, or as the point of vision alters.

  JAMES ANTHONY FROUDE, SHORT STUDIES ON GREAT SUBJECTS VOL III. SOCIETY IN ITALY IN THE LAST DAYS OF THE ROMAN REPUBLIC

  Figure 4.1. Monolithic trunkless legs of hewn granite at Karnak

  The quotation illustrates the conflict that can arise when we study the shadows of a photograph. Using shadows to form conclusions presents a double-edged sword. Though a clearly outlined geometric shape that is free of shadows and is taken in the full light of day provides substantial evidence to form an analysis, shadows can either be your friend or they can be misleading. For instance, the shadow that light throws on the upper lip of the Ramses statue (as shown in figures 3.11 and 3.12) reveals a difference in the smoothness between Ramses’ the upper right and the left lip. To state more than what is obvious in the photograph would be to read more into your analysis than there is. Similarly, the parallel striations that we can see on the upper lip and the philtrum in figure 3.13 are not the best evidence to conclude that the tool that cut the statue followed these particular paths. On the other hand, to achieve the symmetry and precision found on the statues, the craftsmen’s tool had to have a precis
e geometric path to follow. Perhaps, then, these telltale witness marks or “ghost” marks can actually provide us with evidence of the method of manufacture. If so, more of them may be found if we look closer.

  It is estimated that the Parthenon in Athens took ten years to build. Rebuilding efforts of portions of the temple that have suffered the ravages of natural and human forces have been ongoing painstakingly for the past thirty years. A shadow thrown across the cusp of the fluted columns of the Parthenon provides information regarding the geometry and precision with which the flute was cut. The restorers of these columns carefully scrape and chisel the flutes after a specially made machine has cut the flutes in replacement sections. Why? Because the machine could not replicate the ancient technique. Senior science editor of PBS’s Nova, Evan Hadingham, writes:

  Today’s restorers have been replacing damaged column segments with fresh marble. To speed up the job, engineers built a flute-carving machine. The device, however, is not precise enough for the final detailing, which must be done by hand. This smoothing of the flutes calls for an expert eye and a sensitive touch. To get the elliptical profile of the flute just right, a mason looks at the shadow cast inside the groove, then chips and rubs the stone until the outline of the shadow is a perfectly even and regular curve.1

  No records exist that explain how the ancient Greeks built their temples, but modern attempts to replicate their achievements inspired Mr. Hadingham to ask if the original builders had better tools than today’s artisans.

  Similarly, no credible records explain how the ancient Egyptians built their temples, and we could ask the same question of them that is asked about Greek artisans: What tools did the ancient Egyptians use to craft their statues? If we listen to conventional archaeologists, we might conclude that they used a combination of round and straight copper saws charged with abrasive sand, stone hammers, and stone chisels to cut granite. All of these tools were wielded using the energy, skill, and eye of human artisans. But the geometry and symmetry of these statues raise a troubling question about the efficacy of these ancient tools. To be certain, they have been demonstrated to be capable of removing material and shaping hard stone such as granite,2 but not to the level of precision and sophistication that we see in a Ramses statue.

  In today’s manufacturing shops, some products can be machined to desired geometric tolerances without requiring that the marks left by the tool be removed by a secondary process, such as polishing. Any process whereby a tool affects material along a defined path will, without polishing, leave witness to the path of the tool. The tool might be a three-dimensional printer, building discrete amounts of plastic material in thin layers to create all manner of three-dimensional shapes, or a rotating tool bit that cuts material along a geometric path that’s defined by mathematically and incrementally slicing a three-dimensional object along one of its axes. If we are driven to the conclusion that the symmetrical accuracy of the Ramses statues could be achieved only with the assistance of mechanical axes that guide the tool along a predetermined path, then the striations found around the eyes (see figure 4.2) would not be surprising. These marks follow a path that a guided tool would follow to create these features. We should also note that these marks are not visible to the naked eye, but instead were captured by a 15.2 mega-pixel camera using an ultraviolet filter.

  Figure 4.2. Signs of a tool’s path on a statue of Ramses?

  If we speculate that these marks were secondary to the handcrafted creation of the piece, then we might wonder what created them and why. Are they water stains left on the surface of the granite after a downpour? Or are they inherent features of the granite? To answer these questions, we need to understand what modern tool marks look like and then compare them to those on the Ramses statues. Moreover, if the methods for creating the geometry of the Ramses heads used a tool that was meticulously controlled through mechanical means, then the method would have been used on other statues.

  Figure 4.3 illustrates two types of tool marks. Inset 1 shows the surface of a conical steel die that was cut on a lathe. The witness marks of the tool are helical; the tool moves constantly along a linear path while the material rotates. Though these marks are quite clear, to the touch the surface is very smooth; we can feel no ripples. Sheet metal is formed around the shape of this die in a press.

  Figure 4.3. Tool paths on aerospace tools

  Figure 4.4. Geometry of a tool path formed by a ball-end cutter

  Inset 2 shows the surface of a manufacturer’s model for a jet engine part. The tool marks are more pronounced on the top of the fin—the result of a convex radius cutting a convex radius and leaving a pattern of concave cuts. Figure 4.4 shows an example of the type of surface created with multiple passes from a ball-end milling cutter that leaves a cusp between each pass. The distance between the passes could be reduced to create a smoother surface, but for the purpose of this model, it was not necessary and would have added more cost to its manufacture.

  Given what appear to be tool marks on the Ramses head at Luxor, we next must study other statues to see if there are witness marks from the tools that created them. Lighting and the angle of the camera contribute greatly to the ability to see these kinds of witness marks, though this figure is not the clearest example and provides only a hint of what was discovered after we left the Temple of Luxor and visited the Temple of Karnak in the mid-afternoon on November 12, 2008.

  The Temple of Karnak is a sprawling site that covers more than 247 acres. It is considered the largest temple in the world, rivaled only by Angkor Wat in Cambodia, and presents to visitors a stunning collection of monolithic pieces of stone crafted into statues, obelisks, columns, and walls. Karnak is made up of three main temples with several smaller, enclosed temples and outer temples. Construction continued on the temple for thirteen hundred years under approximately thirty different pharaohs.

  The sheer volume of granite, diorite, and alabaster that was cut precisely into statues around Luxor attests to the ancient Egyptians’ mastery of their craft. The Greeks and Romans did not sculpt statues in igneous rock. Granite was not fashioned into statues until the development of more modern power tools with steel bits. In The Materials of Sculpture, Nicholas Penny writes:

  Granite had occasionally been worked in shallow relief, for architectural ornament where it was the local building stone, and for the stiff figures of sixteenth-century calvaries in Brittany, but, before the advent of improved metals and power-driven tools in the nineteenth century, the idea of making statues out of it was seldom seriously entertained by sophisticated sculptors.3

  Whether using a hand-powered chisel or a power tool, shaping granite with a chisel is accomplished by percussive forces acting perpendicular to the surface of the granite. The marks left by these tools, if not polished out, are randomly scattered over the surface of the stone. Similarly, if a bush hammer (one that has nine or more hardened, pyramidal points ground into the face) is used, a mottled surface is created. Bush hammering is a common method of giving stone a rough surface—and is often used for steps in order to make them skid-proof.

  The tool marks visible on the Ramses statues in the Temple of Luxor do not have the appearance of being made by chisels or hammers of any kind. So what kind of tool would the ancient Egyptians have used? Down the left side of the head of one of Ramses statues at Karnak are some tantalizing clues that may give us a clearer idea of what took place in these ancient statuary workshops. I was close to the end of my visit to Karnak when I set up my tripod to photograph the Ramses statue in the forecourt just outside the Great Hypostyle Hall. I peered through my camera lens fitted with a 300 mm zoom lens as the sun set in the west and cast its light across the left side of the face. The evening light revealed a series of striations that flowed in graceful arcs down the cheek and into the neck of the statue. Are the striations on this statue and the Ramses at Luxor simply the result of dirty water running down the statue, or are they witnesses to a sophisticated method of cutting? A close-up of the
cheek (see plate 9) provides more detailed information of cusps between what may be the route taken by a mechanically guided tool. These marks demand further attention before reaching clear conclusion.

  Upon examining plate 10, though, we see the shape of the tool that was most likely used to perform fine detailing on the face and around the eyebrows. At the top of the eyebrow are marks that follow a path down the crown and the brow and end at the top of the eyebrow, where it cut slightly deeper than the surrounding surface leaving rectangular indentations. The indentations are conspicuous by the shadow on the bottom surface caused by the sun grazing across its edge in the corner, and the path of the tool is discernible in the striations that flow down the brow to where we can see the top-of-the-eyebrow indentation. There are six of these indentations, which appear to be equally spaced. Also, below the eyebrow is an area where the tool cut away part of the eyebrow. This cut is noticeable down to the eyeliner. These indentations lie along distinguishable striations that flow from the top of the brow down to the neck. These mistakes tell us that those who created the statue must have determined that the errors were not severe enough to need correcting—a logical conclusion, for they are not noticeable to the naked eye from ground level.

 

‹ Prev