by Mark Bowen
paper appeared in Science Aartsen et al. 2013b.
demonstrated conclusively Halzen and Wille 2016.
his brief speech Halzen 2015.
“observation” of astrophysical neutrinos Aartsen et al. 2014a. Eli Waxman (2014) wrote an accompanying perspective.
extraterrestrial muon neutrinos Aartsen et al. 2015.
exceptionally high by astronomical standards Aartsen et al. 2014b.
universe appears to be awash … Large Hadron Colliders Adrian Cho (2015) has written a feature article in Science about this “cosmic convergence,” in which he relies heavily on Eli Waxman and his seemingly ever-changing “Waxman-Bahcall limit” for a theoretical interpretation. But according to Francis, you don’t need such complicated thinking to explain what IceCube, the cosmic ray instruments, and the Fermi space telescope are measuring. All you need is a cosmic beam dump that produces equal parts gamma rays, neutrinos, and protons.
GEN2 white paper Aartsen et al. 2014b.
she has been seeking for more than ten years now As I write, Aya has just completed yet another “search” for ultrahigh-energy neutrinos, this one spanning seven years (Aartsen et al. 2016c).
Waxman points out Waxman 2014.
latest search for a neutrino star Aartsen et al. 2016d.
detection of the first gravitational wave Abbot et al. 2016.
joint study with LIGO and several other instruments Adrián-Martínez et al. 2016.
a friend David Zahn.
have all the pieces Mervis 2016.
PINGU IceCube-Gen2 Collaboration 2016. (Pingu is the name of a penguin living in Antarctica who stars in an animated children’s television series. Francis and some others lobbied against this unfortunate name and lost.)
didn’t get the paper out until 2016 Aartsen et al. 2016b. See also Schmitz 2016.
article about this non-discovery in the Wall Street Journal Hernandez 2016.
References and Bibliography
*Please note that some of the links referenced throughout this work are no longer active.
AAAS (American Association for the Advancement of Science). 1931. General reports of the first Pasadena meeting of the American Association for the Advancement of Science and associated societies. Science 74:103–23.
________. 2002. Eisenstein Leaves NSF. Science 296:1219.
________. 2007. Whale sensing. Science 315:1199. [doi: 10.1126/science.315.5816.1199d]
Aartsen, M. G., et al. (IceCube Collaboration). 2013a. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111:021103. [doi: 10.1103/PhysRevLett.111.021103] [arXiv:1304.5356]
________. 2013b. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342:1242856. [doi: 10.1126/science.1242856] [arXiv:1311.5238]
________. 2013c. South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy. J. Glaciol. 59:1117–28.
________. 2014a. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113:101101. [doi:10.1103/PhysRevLett.113.101101] [arXiv:1405.5303v2]
________. 2014b. IceCube-Gen2: A vision for the future of neutrino astronomy in Antarctica. [arXiv:1412.5106v2]
________. 2015. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115:081102. [doi:10.1103/PhysRevLett.115.081102] [arXiv:1507.04005 [astro-ph.HE]]
________. 2016a. An all-sky search for three flavors of neutrinos from gamma-ray bursts with the IceCube Neutrino Observatory. Astrophys. J. 824:115. [doi: 10.3847/0004-637X/824/2/115] [arXiv:1601.06484]
________. 2016b. Searches for sterile neutrinos with the IceCube Detector. Phys. Rev. Lett. 117:071801 [doi:10.1103/PhysRevLett.117.071801] [arXiv:1605.01990 [hep-ex]]
________. 2016c. Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube. Phys. Rev. Lett. 117:241101. [doi: 10.1103/PhysRevLett.117.241101] [arxiv.org/abs/1607.05886]
________. 2016d. All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data. Astrophys. J. (forthcoming) [arXiv:1609.04981 [astro-ph.HE]]
Abbasi, R., et al. (IceCube Collaboration). 2009. Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector. Phys. Rev. Lett. 102:201302. [doi:10.1103/PhysRevLett.102.201302] [arXiv:0902.2460 [astro-ph.CO]]
________. 2010. Measurement of the anisotropy of cosmic ray arrival directions with IceCube. Astrophys. J. Lett. 718:L194–98. [doi:10.1088/2041-8205/718/2/L194] [arXiv:1005.2960 [astro-ph.HE]]
________. 2011a. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector. Phys. Rev. Lett. 106:141101. [doi:10.1103/PhysRevLett.106.141101] [arXiv:1101.1448]
________. 2011b. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector. Phys. Rev. D 84:072001. [doi:10.1103/PhysRevD.84.072001] [arXiv:1101.1692]
________. 2011c. IceCube sensitivity for low-energy neutrinos from nearby supernovae. Astron. Astrophys. 535:A109. [doi: 10.1051/0004-6361/201117810] [arXiv:1108.0171 [astro-ph.HE]]
________. 2012. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature 484:351–4. [doi: 10.1038/nature11068] [arXiv:1204.4219 [astro-ph.HE]]
Abbott, B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration). 2016. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116:061102. [doi:10.1103/PhysRevLett.116.061102] [arXiv:1602.03837]
Abraham, J., et al. (Pierre Auger Collaboration). 2007. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318:938–43 [doi: 10.1126/science.1151124]
Achar, C. V., M. G. K. Menon, et al. 1965. Detection of muons produced by cosmic ray neutrinos deep underground. Phys. Lett. 18:196–9.
Achterberg, A., et al. (IceCube Collaboration). 2006. First year performance of the IceCube neutrino telescope. Astropart. Phys. B:155–73.
Ackermann, M., et al. (AMANDA Collaboration). 2006. Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector. Astropart. Phys. 24:459–66. [arXiv:astro-ph/0508518]
Adrián-Martínez, S., et al. (Antares Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration). 2016. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys. Rev. D 93:122010. [doi: 10.1103/PhysRevD.93.122010] [arXiv:1602.05411[astro-ph.HE]]
Ahlers M., L. A. Anchordoqui, M. C. Gonzalez-Garcia, F. Halzen, and S. Sarkar. 2010. GZK Neutrinos after the Fermi-LAT diffuse photon flux measurement. Astropart. Phys. 34:106–15. [doi: 10.1016/j.astropartphys.2010.06.003] [arXiv:1005.2620]
Ahlers, M., M. C. Gonzalez-Garcia, and F. Halzen. 2011. GRBs on probation: Testing the UHE CR paradigm with IceCube. Astropart. Phys. 35:87–94. [doi: 10.1016/j.astropartphys.2011.05.008] [arXiv:1103.3421 [astro-ph.HE]]
Ahmad, Q. R., et al. (SNO Collaboration). 2001. Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87:071301.
Ahmad, Q. R., et al. (SNO Collaboration). 2002. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89:011301.
Ahrens, J., et al. (AMANDA Collaboration). 2002a. Search for supernova neutrino bursts with the AMANDA detector. Astropart. Phys. 16:345–59. [doi: 10.1016/S0927-6505(01)00154-2] [arXiv:astro-ph/0105460v1]
________. 2002b. Observation of high-energy atmospheric neutrinos with the Antarctic Muon and Neutrino Detector Array. Phys. Rev. D 66:012005. [doi: 10.1103/PhysRevD.66.012005] [arXiv:astro-ph/0205109]
________. 2002c. Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector. Phys. Rev. D 66:032006 [arXiv:astro-ph/020
2370]
________. 2003a. Search for point sources of high-energy neutrinos with AMANDA. Astrophys. J. 583:1040–57. [arXiv:astro-ph/0208006]
________. 2003b. Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector. Phys. Rev. Lett. 90:251101. [arXiv:astro-ph/0303218]
AIP (American Institute of Physics), Niels Bohr Library & Archives. 1962. Interview of P. A. M. Dirac by Thomas Kuhn.
________. 1963. Interview of Sir Rudolph Peierls by John L. Heilbron. http://www.aip.org/history/ohilist/4815_1.html. (accessed July 25, 2014).
________. 1995. Interview of Robert March by Patrick Catt. http://www.aip.org/history/ohilist/5910.html. (accessed October 31, 2011).
________. 2001. Interview of Richard Garwin by W. Patrick McCray. http://www.aip.org/history/ohilist/24292.html. (accessed September 29, 2011).
Alekseev, E. N., L. N. Alekseeva, I. V Krivosheina, and V. I. Volchenko. 1988. Detection of the neutrino signal from SN1987a in the LMC using the INR Baksan Underground Scintillation Telescope. Phys. Lett. B 205:209–14.
Alekseev, E. N., L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina. 1987. Possible detection of a neutrino signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research. JETP Lett. 45:589–92.
Aliu, E., et al. (MAGIC Collaboration). 2008. Observation of pulsed γ-rays above 25 GeV from the Crab pulsar with MAGIC. Science 322:1221–4. [doi: 10.1126/science.1164718] [arXiv:0809.2998 [astro-ph]]
Alvarez, Luis. 1949. A proposed experimental test of the neutrino theory. Report UCRL-328, University of California Berkeley, 18 April. (unpublished). http://escholarship.org/uc/item/1sh4k6s2 (accessed September 23, 2014).
Amaldi, Edoardo. 1982. Beta decay opens the way to weak interactions. In Colloque International sur l’Histoire de la Physique des Particules, J. de Phys. 43, suppl. C8:261–300.
AMANDA Collaboration. 1995. On the age vs. depth and optical clarity of deep ice at the South Pole. J. Glaciol. 41:445–54. [arXiv:astro-ph/9501072]
________. 1998. Web site for IceCube neutrino detector workshop, University of California, Irvine, March 27–28. http://www.ps.uci.edu/~icecube/workshop.html (accessed February 9, 2011).
Anderson, Carl D. 1932. The apparent existence of easily deflectable positives. Science 76:2389. [doi: 10.1126/science.76.1967.238]
________. 1933. The positive electron. Phys. Rev. 43:491–44.
Andres, E., et al. (AMANDA Collaboration). 2000. The AMANDA neutrino telescope: Principle of operation and first results. Astropart. Phys. 13:1–20. [doi: 10.1016/S0927-6505(99)00092-4] [arXiv:astro-ph/9906203v1]
________. 2001. Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice. Nature 410:441–3. [doi: 10.1038/35068509]
APS (American Physical Society). 1931. Minutes of the Pasadena meeting, June 15 to 20, 1931. Phys. Rev. 38:579–92.
Askaryan, G. A. 1961. Zh. Eksp. Theor. Fiz. 25:276.
________. 1965. Soy. Phys. JETP 48:988.
Askebjer P., et al. (AMANDA Collaboration). 1995. Optical properties of the South Pole ice at depths between 0.8-km and 1-km. Science 267:1147–50.
________. 1997. UV and optical light transmission properties in deep ice at the South Pole. Geophys. Res. Lett. 24:1355–8. [doi: 10.1029/97GL01246]
Atmanspacher, Harald, and Hans Primas. 1997. The hidden side of Wolfgang Pauli: An eminent physicist’s extraordinary encounter with depth psychology. J. Sci. Explor. 1:369–86. (Originally published in 1996: J. Consciousness Stud. 3:112–26.)
________. 2006. Pauli’s ideas on mind and matter in the context of contemporary science. J. Consciousness Stud. 13(3):5–50.
Auger, Pierre. 1985. Experimental work on cosmic rays: Proof of the very high energies carried by some of the primary particles. In Yataro Sekido and Harry Elliot, eds. Early history of cosmic ray studies: Personal reminiscences with old photographs. Dordrecht, Boston: D. Reidel, 213–8.
Augustine, Norman, et al. 1997. The United States in Antarctica: Report of the U.S. Antarctic program external panel. Washington D.C.: National Science Foundation. http://www.nsf.gov/pubs/1997/antpanel/antpanel.htm (accessed October 22, 2015).
Baade, Walter, and Fritz Zwicky. 1934. Phys. Rev. 45:138.
Babson, J., et al. (DUMAND Collaboration). 1990. Cosmic-ray muons in the deep ocean. Phys. Rev. D 42:3613–3620.
Bahcall, J. N. 1964. Solar neutrinos. I. Theoretical. Phys. Rev. Lett. 12:300–02.
________. 1996a. Ray Davis: The scientist and the man. Nucl. Phys. B (Proc. Suppl.) 48:281–3.
________. 1996b. Solar neutrinos: Where we are, where we are going. Astrophys. J. 467:475–84.
Bahcall, J. N., and R. Davis, Jr. 1982. An account of the development of the solar neutrino problem. In Charles A. Barnes, Donald D. Clayton, and David Schramm, eds. Essays In Nuclear Astrophysics. Cambridge: Cambridge University Press, 243–85.
Bahcall, J. N., M. H. Pinsonneault, and S. Basu. 2001. Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555:990–1012.
Baikal Collaboration. 1992. The Baikal neutrino telescope NT-200: Project description. Sokalski, I., and Spiering, C. eds. Tech. Rep. Baikal-92-03. Zeuthen: Deutsches Elektronen Synchrotron (DESY); Dubna: Institute for Nuclear Research.
Baldin, A. M., and A. A. Komar. 1978. Moiseĭ Aleksandrovich Markov (on his seventieth birthday). Usp. Fiz. Nauk 125:363–8 (Sov. Phys. Usp. 21:544–8).
Balkanov V.A., et al. (Baikal Collaboration). 1998. Reconstruction of atmospheric neutrinos with the Baikal Neutrino Telescope NT-96. Proceedings, 25th international cosmic ray conference, Durban, South Africa, July 30–August 6, 1997. Singapore: World Scientific.
________. 1999. Registration of atmospheric neutrinos with the BAIKAL neutrino telescope NT-96. Astropart. Phys. 12:75–86. [doi: 10.1016/S0927-6505(99)00078-X]
Barker, W. 1979. Pauli remembered (a letter). Phys. Today 32:11.
Barkov, N. I., and V. Ya. Lipenkov. 1984. Kolichestvennaya kharakteristika struktury l’da do glubiny 1400m v rayone stansii Vostok v Antarktide [Numerical characteristics of ice structure down to a depth of 1400 m in the region of Vostok station, Antarctica]. Mater. Glyatsiolog. Issled. 51:178–86.
Battimelli, G., and G. Paoloni, eds. 1998. 20th Century physics: Essays and recollections. A selection of historical writings by Edoardo Amaldi. Singapore: World Scientific.
Becker-Szendy, Ralph, et al. 1990. Search for proton decay into e++p0 in the IMB-3 detector. Phys. Rev. D 42:2974–6.
________. 1993. IMB-3: A large water Cherenkov detector for nucleon decay and neutrino interactions. Nucl. Instrum. Meth. A 324:363–82.
Belolaptikov, I.A., et al. (Baikal Collaboration). 1995. Separation of upward moving muons in the Baikal underwater telescope. In A. Taroni, ed. 1997. XXIV ICRC Rome 1995. (24th International Cosmic Ray Conference: Proceedings) Vol. 1. Bologna: Ed. Compositori, 789–92. (Il Nuovo Cim. 19C (1997) 623–804).
________. 1997. The Baikal underwater neutrino telescope: Design, performance and first results. Astropart. Phys. 7:263–82.
Bement, Arden L., Jr. 2004. NSB-04-56 (Memorandum to the members of the National Science Board: IceCube Neutrino Observatory, 5 April). http://www.nsf.gov/od/opp/opp_advisory/briefings/may2004/icecube.doc (accessed March 10, 2016).
Bernstein, Jeremy. 1962. A question of parity. The New Yorker, 12 May.
________. 2001a. Hitler’s Uranium Club: The secret recordings at Farm Hall, 2nd ed. rev. New York: Copernicus.
________. 2001b. The merely personal: Observations on science and scientists. Lanham, Maryland: Ivan R. Dee.
Bethe, Hans A. 1939. Energy production in stars. Phys. Rev. 55:434–56.
________. 1990. Supernova mechanisms. Rev. Mod. Phys. 62:801–66.
Bethe, Hans A., and Rudolph E. Peierls. 1934. The “neutrino.” Nature 133:532–3. [doi:10.1038/133532a0]
Bilenky, S. M. 2006a. Bruno Pontecorvo: Mister neutrino. In
Milla Baldo Ceolin, ed. 2006. Third NO-VE International Workshop on: Neutrino Oscillations in Venice (7–10 February 2006, Venice, Italy). Padova: Edizioni Papergraf. [arXiv:physics/0603039 [physics.hist-ph]]
________. 2006b. Neutrino Majorana. Annales de la Fond. L. de Broglie 31:139–56.
Bilenky, S. M., T. D. Blokhintseva, I. G. Pokrovskaya, and M. G. Sapozhnikov, eds. 1997. B. Pontecorvo, selected scientific works: Recollection on B. Pontecorvo. Bologna: Società Italiana di Fisica, Editrice Compositori.
Bionta, R. M., et al. (IMB II Collaboration). 1987. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys. Rev. Lett. 58:1494–6.
Bionta, R. M., et al. 1983. Search for proton decay into e+ p0. Phys. Rev. Lett. 51:27–30.
Biron, Alexander, et al. 1999. Separation of νμ event candidates in AMANDA-B. AMANDA Internal Report 19990902, 27 September.
Bogatyrev, V. K. 1971. On the possibility of constructing large detectors for neutrino astronomy. Sov. J. Nucl. Phys. 13:187.
Bohr, Niels. 1929. Letter to Pauli, July 1, 1929, with draft about β-decay. Niels Bohr Archives, Copenhagen.
________. 1936. Conservation laws in quantum theory. Nature 138:25.
________. 1960. Forward to Fierz and Weisskopf 1960, 1–4.
Bonolis, Luisa. 2005. Bruno Pontecorvo: From slow neutrons to oscillating neutrinos. Am. J. Phys. 73:487.
________. 2011. Walther Bothe and Bruno Rossi: The birth and development of coincidence methods in cosmic-ray physics. Am. J. Phys. 79:1133. [arXiv:1106.1365 [physics.hist-ph]]
Borrego, Anne Marie. 2003. Waiting game at the NSF. Chron. Higher Ed. 49:A20.
Bosman, Julie. 2015. 2016 Ambitions seen in Walker’s push for university cuts in Wisconsin. New York Times, 16 February.
Bouchta, Adam. 1998. Muon analysis with the AMANDA-B four-string detector. Ph.D. thesis, Stockholm University.
Bowen, Mark. 2005. Thin ice: Unlocking the secrets of climate in the world’s highest mountains. New York: Henry Holt and Company.
________. 2007. Censoring science: Inside the political attack on Dr. James Hansen and the truth of global warming. New York: Dutton.