The Telescope in the Ice

Home > Other > The Telescope in the Ice > Page 54
The Telescope in the Ice Page 54

by Mark Bowen


  Schneider, Darryn. 2007. Diaries of trips to the South Pole. http://antarctica.kulgun.net/SouthPole/ (accessed February 15, 2013).

  Schorn, Ronald A. 1987a. A Supernova in our backyard. Sky & Telescope 73:382 (April).

  ________. 1987b. Supernova shines on. Sky & Telescope 73:470 (May).

  ________. 1987c. Neutrinos from hell. Sky & Telescope 73:477 (May).

  Schwartz, M. 1960. Possibility of using high energy neutrinos to study weak interactions. Phys Rev Lett. 4:307.

  Schwarz, Robert. 2015. iceman’s South Pole page. http://www.antarctic-adventures.de/ (accessed June 3, 2015).

  Segrè, Emilio. 1970. Enrico Fermi, physicist. Chicago: University of Chicago Press.

  Segrè, Gino. 2007. Faust in Copenhagen: A struggle for the soul of physics. New York: Viking Penguin.

  Seife, Charles. 2004. Wanted: One good cosmic blast to shake the neighborhood. Science 303:164–5. [doi: 10.1126/science.303.5655.164]

  Simonsen, Mike. 2009. Albert Jones–the interbiew [sic] (blog post). http://simostronomy.blogspot.com/2009/11/albert-jones-interbiew.html (accessed August 21, 2011).

  Sobel, Henry W., and Yoichiro Suzuki. 2008. Yoji Totsuka (1942–2008). Nature 454:954.

  Sokalski, I., and C. Spiering, eds. (Baikal Collaboration). 1992. The Baikal neutrino telescope NT-200.

  Spiering, Christian, ed. 1999. Simulation and analysis methods for large neutrino telescopes (Proceedings of an international workshop, Zeuthen, Germany, July 6–9, 1998). Zeuthen: DESY. (DESY-PROC-1999-01.)

  Spiering, Christian. 2012. Towards high-energy neutrino astrophysics: A historical review. Eur. Phys. J. H 37:515–65. [doi: 10.1140/epjh/e2012-30014-2]

  Stark, Jack. 1995. The Wisconsin Idea: The university’s service to the state, in 1995–1996 Wisconsin blue book. Madison: Wisconsin Legislative Reference Bureau. http://legis.wisconsin.gov/lrb/pubs/feature/wisidea.pdf (accessed July 10, 2012).

  Stenger, V. J., ed. 1981. DUMAND 80: Proceedings. 2 vol. Honolulu: Hawaii DUMAND Center.

  Stokstad, Robert G. 2005. Design and performance of the IceCube electronics. Presentation at 11th workshop on electronics for LHC and future experiments, Heidelberg, 12–16 September. http://icecube.lbl.gov/PDFS/RGS_Heidelberg_paper.pdf (accessed November 15, 2015).

  Sutton, Christine. 1992. Spaceship neutrino. Cambridge: Cambridge University Press.

  Taubes, Gary. 1986. Nobel dreams: Power, deceit, and the ultimate experiment. New York: Random House.

  Tilav, Serap, et al. (AMANDA Collaboration). 1997. Indirect evidence for long absorption lengths in Antarctic ice. In A. Taroni, ed. 1997. XXIV ICRC Rome 1995. (24th International cosmic ray conference: Proceedings) Vol. 1. Bologna: Ed. Compositori, 1011–4. (Il Nuovo Cim. 19C (1997) 623–804).

  Time. 1951. SPIES: Worse than murder, 15 April. http://www.time.com/time/magazine/article/0,9171,814669-1,00.html (accessed March 15, 2011).

  Totsuka, Yoji. 1999. Evidence for neutrino oscillation observed by Super-Kamiokande. In Spiering 1999, 76–95.

  Turchetti, Simone. 2003. Atomic secrets and governmental lies: Nuclear science, politics and security in the Pontecorvo case. Brit. J. Hist. Sci. 36(4):389–415.

  ________. 2012. The Pontecorvo Affair: A cold war defection and nuclear physics. Chicago: Univ. of Chicago Press.

  Überall, H., and C. Cowen. 1965. In C. Franzinetti, ed. Proc. CERN conf. on exptl. neutrino physics: CERN Report 65–32. Geneva: CERN, 231.

  Uhlenbeck, G. E., and S. Goudsmit. 1925. Ersetzung der hypothese von unmechanischen zwang durch eine forderung bezuglich des inneren verhaltens jedes einzelnen elektrons. Naturwissenschaften 13:953–4.

  ________. 1926. Spinning electrons and the structure of spectra. Nature 117:264–5.

  University of Wisconsin-Madison Archives, Oral History Project. 2007. Interview #842. Halzen, Francis.

  Vander Velde, John C. 2002. The IMB experiment: A brief historical sketch 1979–1989. http://www-personal.umich.edu/~jcv/imb/imb.html (accessed July 21, 2011).

  von Meyenn, Karl, and Engelbert Schucking. 2001. Wolfgang Pauli. Phys. Today 54:43–8. [doi: 10.1063/1.1359709]

  Waxman, Eli. 1995. Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75:386. [doi: 10.1103/PhysRevLett.75.386]

  ________. 2014. The beginning of extra-galactic neutrino astronomy. Physics 7:88. http://physics.aps.org/articles/v7/88 (accessed July 10, 2016).

  Waxman, Eli, and John Bahcall. 1997. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78:2292. [doi: 10.1103/PhysRevLett.78.2292]

  Weekes, Trevor C., et al. 1989. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342:379.

  Weisskopf, Victor F. 1972. In C. Weiner, ed. Exploring the history of nuclear physics. New York: American Institute of Physics.

  Westphal, Andrew J., P. Buford Price, and Daniel P. Snowden-Ifft. 1990. A measurement of the isotopic composition of iron-group elements in the galactic cosmic rays using balloon-borne track-recording detectors in Antarctica. In Mullan et al. 1990, 184–9.

  Wheeler, John A., and Kenneth Ford. 1998. Geons, black holes & quantum foam: A life in physics. New York: W. W. Norton.

  Wiebusch, Christopher H. V. 1994. Signal processing with JULIA. In Peter C. Bosetti, ed. Trends in astroparticle-physics. (Proceedings of a conference held in Aachen, Germany, in 1991). Stuttgart: B.G. Teubner Verlagsgesellschaft, 217.

  Wigner, Eugene P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pur. Appl. Math. 13:1–14.

  Wilczek, Frank. 2009. Majorana returns. Nature Phys. 5:614–8. [doi:10.1038/nphys1380]

  Wilkes, R. Jeffrey, John G. Learned, and Peter W. Gorham. 2003. Deep ocean neutrino detector development: Contributions by the DUMAND project. http://www.phys.hawaii.edu/~dumand/dumacomp.html (accessed June 9, 2011).

  Williams, P. K., et al. 1996. Report on the scientific assessment group for experiments in non-accelerator physics (SAGENAP), February 20–21, 1996. Washington D.C.: United States Department of Energy. http://science.energy.gov/~/media/hep/pdf/files/pdfs/sagenap.pdf (accessed October 3, 2012).

  Wilson, Fred L. 1968. Fermi’s theory of beta decay. Am. J. Phys. 36:1150–60.

  Wischnewski, Ralf, et al. (AMANDA Collaboration). 1997. A System to search for supernova bursts with the AMANDA detector. In A. Taroni, ed. 1997. XXIV ICRC Rome 1995 Vol. 1. Bologna: Ed. Compositori, 658–61. (Il Nuovo Cim. 19C (1997) 623–804.)

  Wolchover, Natalie. 2015. The particle that broke a cosmic speed limit. Quanta (online magazine), 14 May. https://www.quantamagazine.org/20150514-the-particle-that-broke-a-cosmic-speed-limit/ (accessed May 18, 2015).

  Woosley, S. E., and H.-T. Janka. 2005. The physics of core-collapse supernovae. Nature Phys. 1:147. [arXiv:astro-ph/0601261v1]

  Woosley, S. E., and M. M. Phillips. 1988. Supernova 1987A! Science 240:750–9.

  Woosley, S. E., and T. Weaver. 1989. The great supernova of 1987. Sci. Am. 261:32 (August).

  Wright, John H. 2012. Blazing Ice: Pioneering the twenty-first century’s road to the South Pole. Dulles, Virginia: Potomac.

  Wu, C. S. 1960. The neutrino. In Fierz and Weisskopf 1960, 249–303.

  Wu, C. S., E. R. Ambler, W. Hayward, D. D. Hoppes, and R. P. Hudson. 1957. Experimental test of parity conservation in beta decay. Phys. Rev. 105:1413.

  Yang, C. N. 1957. The law of parity conservation and other symmetry laws of physics. Nobel lecture. http://nobelprize.org/nobel_prizes/physics/laureates/1957/yang-lecture.pdf (accessed January 22, 2011).

  Zas, Enrique, Francis Halzen, and Todor Stanev. 1992. Electromagnetic pulses from high-energy showers: Implications for neutrino detection. Phys. Rev. D 45:362–76.

  Zheleznykh, I. M. 1958. On the interaction of high energy neutrinos in cosmic rays with matter. Diploma thesis, Moscow State University, Physical Faculty.

  ________. 2006. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy (1957
–1962). Int. J. Mod. Phys. A 21:1. [doi: 10.1142/S0217751X06033271]

  INDEX

  The index that appeared in the print version of this title does not match the pages in your e-book. Please use the search function on your e-reading device to search for terms of interest. For your reference, the terms that appear in the print index are listed below.

  accelerators

  cosmic

  Large Hadron Collider (LHC)

  principle of operation

  Ahlers, Markus

  air showers. See cosmic rays

  Amundsen, Roald

  Amundsen-Scott Research Station (South Pole)

  culture of

  wintering over at

  Anderson, Carl

  Antarctic Muon and Neutrino Detector Array (AMANDA)

  AMANDA-A

  as supernova detector

  AMANDA-B4

  AMANDA-B10

  final drilling campaign

  first gold-plated events. See also Eva event; Peacock events

  first neutrino candidates

  funding of

  and IceCube

  naming of

  Nature papers

  origins

  science with

  Antarctic Treaty

  Antarctica: A Year on Ice (documentary)

  ANTARES

  antineutrino

  antiparticle

  ATmospheric High Energy Neutrino Experiment (ATHENE)

  Auger, Pierre

  Augustine, Norman

  Ayotte, Sally

  Baade, Walter

  Bahcall, John

  Baikal neutrino telescope

  detects first-ever gold-plated neutrinos

  NT-200

  origins

  political challenges

  reconstructs first-ever up-going muons

  wins “three-string race”

  Baksan Neutrino Observatory (Caucasus)

  Baldo Ceolin, Milla

  Balzan Prize

  Barber, Bill

  Barger, Vernon

  Barish, Barry

  Barker, William

  Bartol Research Institute (University of Delaware)

  Barwick, Steven

  Bateson, Frank

  Bay, Ryan

  Beattie, Keith

  Bell Telephone Laboratories

  Bentley, Charley

  Berezinsky, Veniamin

  Bernstein, Jeremy

  beta decay

  and energy conservation

  energy spectrum of

  Fermi’s quantum theory for

  inverse

  Joliot-Curies’ form of

  and neutrinos

  Bethe, Hans

  theory of energy and neutrino production in stars

  Bezrukov, Leonid

  Big Bang

  black holes

  Blood, Howard

  Bohr, Niels

  Bonolis, Luisa

  Born, Max

  Bosetti, Peter

  Botner, Olga

  Bouchta, Adam

  Bret, James “Tater”

  Brookhaven National Laboratory

  Budnev, Nikolaij

  Burrows, Adam

  Bush, George W.

  Caltech

  Jet Propulsion Laboratory

  Camerini, Ugo

  Carter, Jimmy

  cascades

  Case Institute of Technology (later Case Western Reserve University)

  CERN (Conseil Européen pour la Recherche Nucléaire)

  Chadwick, James

  Chen, Herb

  Cherenkov, Alekseyevich

  Cherenkov detectors (Cherenkov counters)

  Greisen (“shell”) design

  Markov (“plum pudding”) design

  principle of operation

  submarine communication with

  supernova detection with

  Cherenkov radiation (Cherenkov light)

  Cherenkov telescopes, air. See also Cherenkov detectors (Cherenkov counters): Markov (“plum pudding”) design

  Cherwinka, Jeff

  Chinowsky, William “Willi”

  Christchurch, New Zealand

  Chudakov, Aleksandr

  climatology

  Cline, Camerini, Fry, March, Reeder (CCFMR) research group

  Cline, Dave

  Clinton, Bill

  Columbia University

  Colwell, Rita

  Cook, Frederick

  Córdova, France

  Cosmic Background Explorer (COBE)

  Cosmic Microwave Background Radiation

  cosmic ray physics

  instruments (laboratories, stations)

  cosmic rays

  air showers

  discovery of

  neutrinos as

  cosmology

  Cowan, Clyde. See also neutrinos: discovery of

  Cowan, Doug

  Crab Nebula

  Cray T3E supercomputers

  Curie, Marie

  Cygnus X-3

  Dahlberg, Eva. See also Eva event

  dark matter

  Daschle, Tom

  data acquisition system (DAQ)

  Davis, Howard

  Davis, Ray

  de Los Heros, Carlos

  Deep Underwater Muon and Neutrino Detector (DUMAND)

  cancelation of

  creation of

  DUMAND on ice

  Honolulu workshop (1976)

  significance of

  DeepCore

  DeYoung, Tyce “Ty”

  digital optical modules (DOMs). See also Nygren, David

  Dirac, Paul

  Dirac equation

  Domogatsky, Grigorii

  E1A experiment

  Einstein, Albert

  general theory of relativity

  special theory of relativity

  and Pauli, Wolfgang

  Ekström, Patrik

  Elcheikh, Alan

  Electrodynamics (Jackson)

  electrons

  electroweak theory of particle physics

  Ellis, Charles Drummond

  Engelhardt, Hermann

  Enz, Charles

  Eva event

  Fermi, Enrico

  engineers first manmade nuclear chain reaction

  slow neutron research

  theory of beta decay. See beta decay

  and via Panisperna Boys

  Fermi Large Area Telescope

  Fermilab

  Feynman, Richard

  Feyzi, Farshid

  Fierz, Markus

  fine structure constant

  firn (glacial layer)

  fission, nuclear

  as neutrino source

  Fly’s Eye experiment

  forces, fundamental

  electromagnetic force

  gravitational force

  strong nuclear force

  weak nuclear force

  See also grand unification theories; standard model of particle physics

  Frisch, Otto

  Fry, William F. “Jack”

  Gaisser, Tom

  Galileo Galilei

  Gamma-ray Astronomy at the South Pole (GASP)

  gamma ray bursts (GRBs)

  gamma rays

  Ganugapati, Raghunath “Newt”

  Garwin, Richard

  Georgi, Howard

  glaciology

  Glashow, Sheldon

  Glorious Revolution

  Glowacki, Dave

  Goldhaber, Maurice

  Goldschmidt, Azriel

  Gonzalez-Garcia, Maria Concepcion

  Goobar, Ariel

  Gore, Al

  Gorham, Peter

  Goudsmit, Samuel

  Gow, Anthony

  grand unification theories

  string theory

  supersymmetry

  See also forces, fundamental

  Grant, BK

  Greisen, Kenneth

  Hahn, Otto

  Haleakalā telescope

  Hallgren, Allan

  Halze
n, Francis

  career path

  childhood and education

  conceives of AMANDA

  and DUMAND

  as manager and leader

  and standard model of particle physics

  See also Quarks and Leptons (Halzen and Martin)

  Hanson, Kael

  Hardtke, Rellen

  Hartill, Donald

  Hartline, Beverly

  Harvard-Purdue-Wisconsin experiment (HPW)

  Haugen, Jim

  Heisenberg, Werner

  Henderson, W. J.

  “Herc”

  Hess, Victor

  Higgs boson

  high-energy physics (HEP)

  Hill, Gary

  Hincks, E. P. “Ted”

  Hoffman, Kara

  Homestake Gold Mine (Lead, South Dakota)

  hot water drilling

  Bucky-1 (drill)

  firn drill

  Wotan (Enhanced Hot Water Drill)

  Hoyle, Fred

  Hulth, Per Olof “Peo”

  and DeepCore

  and “Swedish Camera”

  Hundertmark, Stephan

  ice

  air bubbles in

  clathrates in

  drilling. See hot water drilling; ice core drilling

  dust layers in

  properties

  transparency to Cherenkov light

  ice core drilling

  at Byrd Station (West Antarctica)

  at Greenland Ice Sheet Project (GISP)

  at Kilimanjaro (Africa)

  at Nevado Sajama (Bolivia)

  and second Greenland Ice Sheet Project (GISP2)

  at Vostok Station (Antarctica)

  See also Polar Ice Coring Office (PICO)

  IceCube

  approval process

  as cosmic ray instrument

  and dark matter

  DeepCore

  deployment. See also Tower Operations Structure

  detects first cascades

  detects first muon

  and electron neutrinos

  and extraterrestrial (astrophysical or cosmic) neutrinos

  funding

  and gamma ray bursts

  and GZK neutrinos

  IceCube-GEN2

  IceCube Laboratory (ICL)

  IceTop

  management of

  naming of

  Neutrino Detector Workshop, UC Irvine

  Neutrino Observatory

  and neutrino oscillation

  and neutrino point sources (neutrino stars)

  origins of

  and politics

  Precision IceCube Next Generation Upgrade (PINGU)

  principle of operation

  and sterile neutrinos

  and supernovae

  and tau neutrinos

  and ultrahigh-energy cosmic rays

  IceCube Particle Astrophysics Symposium

 

‹ Prev