There are other advantages to submarines too. Like if the balloon were to go up, I’d sneak off to a Pacific Island somewhere, park the boat under an overhanging palm tree where it couldn’t be seen by nosy satellites and spend the war drinking rum punches with exotic girls called Miu Miu.
Then when the fighting was over I’d shoot a few pretend bullet holes in the hull and sail home, claiming that my suntan was down to a faulty reactor.
This plan assumes that I’d be the captain but that, I’m afraid, is a given. I couldn’t possibly join the crew of a sub as an enlisted man. They have to share beds, which is suspect, but worse, they have to crap in public, and I’m sorry but I can’t do that. I need my own lavatory, with lots of reading material, in a part of the ship where I can be alone. So, it’s captain or nothing.
Actually, I’ve always loved submarines. Way back when I was a small boy my uncle, who lived in Nova Scotia and claimed to be a salesman, once came from Canada to England on a sub. He never said why or what it was like, but I spent the next ten years hanging on to his trouser leg. To me, he was James Bond. He probably was.
Secrecy is the biggest appeal of the submarine; its ability to wage a sneaky war. When the idea was first seriously mooted for an underwater vessel, the Royal Navy’s top brass, which is fuelled by money and tradition in equal parts, dismissed the idea as ‘underhand and ungentlemanly’.
It might also have had something to do with the fact that the first real submarine, with an engine, was designed by a British chap… who had strong Irish Republican sympathies.
Mostly, though, they really didn’t like the idea of a ship attacking another ship without showing itself first. That would be like having a duel with one of the contestants hiding in a hedge. Me, though, I love the idea of creeping up to a target, blowing it to kingdom come and then slipping away without leaving so much as a ripple. It seems safe, somehow, and better still, it’s a job you can do sitting down. Of course, the captain (me) has to stand occasionally, but at least there’s a handy periscope to lean on.
It was not always thus.
We’ve read Nicholas Monserrat, we know about the WW2 convoys and how countless million tons of ships were sunk each year, and we’re told of Churchill’s concerns about the U-boat. ‘The only thing that ever frightened me during the war was the U-boat peril,’ he wrote in his memoirs.
In the First World War the German subs could be contained by mining the English Channel off Dover. But in the Second World War Germany conquered France, which allowed them to station their subs on the Atlantic coast. This meant the convoys coming from America were within easy reach, as were any ships going to the Med or the furthest-flung corners of the Empire.
Beating the threat became a question of mathematics. To many it sounded silly, grouping all the ships together in one lump for the voyage from the USA to the UK. Surely, the sceptics reasoned, if a convoy is discovered by a U-boat, it can pick off the lot, whereas if it happens across just one ship on its own, that’s bad but not catastrophic.
True, but when a sub finds a ship it must manoeuvre itself into the right position, something that’s not always possible. If it were to fail with one ship, it wouldn’t have to wait that long before another trundled by. If it were to fail after sighting a convoy, it would miss all the ships in it, and it might be days before it happened upon another.
Put simply, in the time it had at sea, a sub could not sink any more convoy ships than it would have done had it been presented with a series of individual targets.
And what’s more, because the convoys always had warships to escort them, it meant the U-boats were being drawn to the Royal Navy’s guns. To get at the merchantmen, the Germans had to get past the destroyers first and that was never easy.
Convoys forced the Nazis to rethink their battle plans. They spread their subs out in a chain across the Atlantic, and then when a convoy was sighted messages were flashed to the base in France and other subs were zeroed in on the position. We had the convoys. They had the wolf packs. But the battle was actually fought in laboratories and workshops back at home.
We developed sonar. They developed techniques for evading it. We made depth charges that could sink to 500 feet before exploding. They built pressure hulls that could go deeper still. We made fast frigates to catch an escaping sub. They made more powerful engines. We cracked their codes. They cracked ours. We developed radar that could be fitted to aircraft. They developed a radar detector so a sub could dive before the plane got there. We introduced four-engined bombers that could offer protection over the whole Atlantic. They developed snorkels for the diesel engines so they could stay submerged. It was a constant battle of the brains, and they were very good. But in the end they didn’t starve Britain into submission. Because we were better.
The U-boat peril may have scared Churchill to death and it may have caused countless thousand utterly miserable deaths. There were times too, especially in 1941 and parts of 1942, when a small fleet of German subs really did have the upper hand over the largest merchant fleet and the most powerful navy in the world.
At the start of the war we had 3,000 merchant ships and the Germans 100 U-boats, only six of which were in the Atlantic at any one time. Yet with just six boats, the Nazis sank 400 ships in the first eight months. They were blowing them up twice as fast as we could replace them. And by the summer of 1941 the Germans had twelve U-boats at sea. They were aiming to have 300 out there, and that really would have been that.
But in the end the old U-boat design was beaten by technology. Consider the old game of paper, scissors and stone. The sub can beat the ship, but as soon as it surfaces for air or fuel it’s always going to be beaten by the plane. And the U-boats had to surface…
But then came the dawn of nuclear power, and submarines that could stay down there, making no noise at all, for month after month after month. If Churchill thought those old German diesel boats were frightening, then he would have been utterly terrified by the nukes.
Not only could this all-new weapon beat the paper, the scissors and the rock but also cruisers and aircraft carriers, and when the intercontinental ballistic missile was developed, whole countries as well.
The job of these dedicated missile boats is to pootle about, like mice in carpet slippers, with their ballistic missiles, waiting for an order to destroy an entire continent.
It could be argued, so I will, that if Britain’s MoD really were a Ministry of Defence, then it could dispense with the army and the air force. All it would need to protect us is one of these ‘boomers’. No really. If anyone was going to attack, they’d try to remove our nuclear capability first – but how do you do that when you have no clue where it is?
Finding one of these things is not like looking for a needle in a haystack. Because a haystack is small. A boomer is huge, for sure – the Russian Typhoons are as big as First World War battleships – but they can hide anywhere in two-thirds of the world’s surface. One could be sitting a mile off your coast, or it could be under the polar ice cap. It could be anywhere.
Once I saw one of these things surface, quite unexpectedly, in the Channel. One minute the sea was calm and blue and seemingly full of nothing more dangerous than cod. And then the next a huge black shape, the most menacing thing I’d ever seen, was just… there.
It made me feel safe. It was a reminder that, despite all of Britain’s woes and insecurities, we’re still one of the world’s big players. Today you really can judge a country on whether it has a fleet of nuclear subs. Such a thing is a defining characteristic, a measure of technical clout. It means we can walk a little taller.
But actually, my favourite of all the submarines ever made are the hunter-killers, the super-fast attack boats that prowl the seas in search of the boomers.
A modern nuclear-powered American Los Angeles Class submarine can dive to 1,500 feet. It can reach 20 knots on the surface, which means you could water-ski behind it, and, more impressively, 35 knots when it’s submerged. It can fire tor
pedoes at shipping or, if ordered to do so by the president, cruise missiles at cities several hundred miles away. It is like the Alien – a perfect killing machine.
And how do you destroy such a thing? It is so fast and so manoeuvrable that by the time you’ve found it it’s somewhere else. You’re aiming your depth charges or your torpedoes at something that simply isn’t there any more.
To give you an idea of how quiet these subs are, an American boat once trailed a Soviet boomer for 40 days without being detected. Imagine having a shadow for nearly six weeks and not knowing.
In fact in the Cold War the only time you really knew you had a hunter-killer up your jacksie was when it rammed you by mistake. Since 1967 there have been eleven collisions between Russian, American and British subs. One British boat came back to port with the bow scoured by a Russian propeller.
Happily, however, a nuclear submarine has only fired its torpedoes in anger once. Needless to say, it was one of ours, after the Argies invaded Mrs Thatcher.
When the Argentine light-cruiser Belgrano was hit by two torpedoes from the snout of Conqueror, a British hunter-killer, the enemy escort ships immediately gave chase. They were out of ideas after just five miles. The Royal Navy vessel had approached unseen, fired unseen and simply disappeared.
Underhand and ungentlemanly perhaps. But at least the sub’s commanding officer, Chris Wreford-Brown, maintained all the finest Navy traditions of understatement when asked about the incident later. ‘The Royal Navy spent thirteen years preparing me for such an occasion,’ he said. ‘It would have been regarded as extremely dreary if I had fouled it up.’
He didn’t, and as a result the rest of the Argentine Navy returned to port, where it stayed for the remainder of the war. Fighting the bits of the Royal Navy that could be seen was going to be hard enough. Fighting the bits that were invisible – that would be impossible.
After the conflict was over Conqueror sailed into Scottish waters flying the Jolly Roger, a sign that she’d had a kill while on tour. But despite her place in the history books she was decommissioned in 1990. Her periscope was given to a museum and today she sits in Faslane, quietly rotting.
Space Shuttle
We expect astronauts to have balls the size of Corvettes and a Readybrek glow of invincibility. We expect them to be a bit like superheroes, only a little more super and a lot more heroic. We expect them to be nothing like anyone we’ve ever met before.
When I arranged to meet one a few years ago I was expecting a blend of Robert Plant and Batman to barge through the door, but what I got was Hoot Gibson, who had beige trousers, a bad shirt, a Toyota Camry and a much-publicised fondness for the music of the Moody Blues.
As the day wore on I realised why you should never judge a book by its cover, or by the tunes it plays in its four-door saloon. Hoot may have had a four-dollar haircut and enough man-made fibres in his shirt to keep the petrochemical industry going for a thousand years, but he can do stuff that better-dressed, better-paid men cannot. Like fly his homemade racing plane, upside down, under the blades of a hovering helicopter, or dive-bomb Vietnamese missile sites in his Phantom jet or, best of all, control the most powerful machine ever made by man… the Space Shuttle.
Like Hoot, it doesn’t look like much in the pictures. It’s a big ungainly lorry that lumbers off its launch pad for an invisible rendezvous in the inky blackness of space. Then it lands again. Wow. Big deal.
But then I was taken to the Louisiana facility where Rockwell makes and tests the engines for this delivery truck. The engineers had said I could stand 200 yards from the test bed but recommended I wore ear defenders. ‘No thanks,’ I said, with a patronising smile. ‘I’ve seen The Who live five times. I know what noise is.’ But not even Keith Moon had prepared me for the ferocity of that sound. It’s a kind of white noise that you can feel as much as you hear. And it feels like the work of God.
It certainly messes with nature. When the test was over the massive exhaust cloud, which is nothing but water vapour, rose slowly into the heat of that sultry Louisiana afternoon. For a while it hung there, an incongruous white lump in the uninterrupted ocean of blue. And then it started to rain. NASA, it seems, is making its own weather.
The Shuttle has three of these engines but surprisingly, once you’ve seen the biblical power that just one produces, their combined thrust would not even lift the Shuttle two feet off the launch pad.
What they do when they’re ignited, around six seconds before launch, is cause the whole machine, the Shuttle itself, its two solid rocket boosters and its fuel tank, to actually flex against the restraining bolts.
Eventually it can flex no more, and begins quite literally to ‘boing’ back the other way. By this stage the countdown is complete, and as the nose passes through the vertical the solid rocket boosters are ignited. Now the machine is producing 37 million horsepower and there are no restraining bolts on earth that could restrain that.
One astronaut described the Shuttle mounted on this tremendous power-delivery system as being like a butterfly mounted to a bullet.
On the television the Shuttle does seem to lumber off the launch pad, but ‘lumber’ is quite the wrong word. In fact by the time the tail has cleared the tower it’s already doing 120 mph. ‘It doesn’t feel like it’s lumbering from inside,’ says Hoot. ‘You just hear an enormous explosion and pray you’re going up.’
Once the SRBs have been ignited they can only be turned off by one man. He sits in a little shed on the other side of the launch site. He has never met the astronauts on board and they have never met him. If something goes wrong and the Shuttle appears to be on a collision course with Miami, or any other population centre, his job is to push a little button on his desk. This sends a radio signal to two detonators that are linked to a strip of explosives. If you look carefully in the pictures, you can even see them, two long wavy yellow lines that run the length of each SRB. And then the Shuttle, along with everyone on board, will be blown up.
So far the anonymous man has never been used. But if you saw what happened to Challenger back in 1986, you know why he’s there… the Shuttle has not far short of the destructive power of an atomic bomb.
Obviously, by channelling this non-stop stream of power, the acceleration is vivid. Thirty seconds after leaving the launch pad the Shuttle is going through the sound barrier and the world is being treated to two sonic booms – one from its nose and another from its tail.
Then, after two minutes, the empty SRBs are ejected and fall back into the Atlantic, from where they will be recovered and reused. If something were to go wrong at this point, the crew would simply point the nose at the earth again and land at an emergency runway that NASA maintains in Spain. The journey, a spectacular arc from Florida to the Iberian peninsula, would, according to Hoot, take ‘less than twenty minutes’.
But if nothing goes wrong, the Shuttle continues to pick up speed thanks to its main engines. They’re sucking fuel through a 17-inch-diameter pipe at such a rate that they’d drain an Olympic-sized swimming pool in ten seconds flat. After eight minutes they’ve used every one of the 500,000 gallons in the huge tank. And for this mission their work is done. The Space Shuttle is on the edge of space, doing 17,500 mph.
Truck? I don’t think so.
But if you think getting to space is a bewildering array of big numbers, it’s nothing compared with the complexities of getting back down again.
To penetrate the earth’s atmosphere, the nose cone has to withstand a shockwave that, at 3,000 degrees Fahrenheit, is considerably hotter than the surface of the sun. Crew members sitting in the back seats of the upper deck can look backwards through the glass ‘moon’ roof and see nothing but a sheet of white-hot flame. And after they’ve barged their way through this the pilot has got to slow the machine down from 17,000 mph to a safe landing speed of 211 mph.
This is tricky, partly because he has no fuel left and therefore no power and partly because the Shuttle has the aerodynamic properties of an Aga
. As a result, he has to make a series of sweeping turns, washing off speed with each one, but even then the rate of descent is still seven times greater than in a normal plane. Put it this way: if a crew member were to jump as the Shuttle was on its final approach, the plane would hit the ground before he did.
I love the Space Shuttle. I love the sense that every single figure and every single fact is more mind-boggling than the last.
When it’s in space we know the crew take just the most astonishing photographs. There they are, fiddling about in their balloon suits, while far below we can see Italy sliding by. It’s the juxtaposition, I think, of utter civilisation in the background and absolute hostility in the foreground that makes the shots so spectacular.
And it really is hostile where Hoot and his colleagues strut their stuff. For instance, if they fly with one side of the Shuttle facing the sun for too long, one cargo-door will swell and won’t close properly. So then they have to turn the whole caboodle round to heat the other side up as well.
No astronaut has ever been lost in space but there have been close calls. The 46th mission called for the crew to launch a European satellite from the cargo area and then fly in formation while checks were carried out by staff at the command centre in Germany.
All was going well until someone on earth pushed the wrong button. Instead of rotating, the satellite veered off course and started heading straight for the Shuttle. Andy Allen was alone at the controls when the radar sounded a collision alarm. He couldn’t see the satellite because they were on the dark side of the earth and he couldn’t get a fix from his instruments because it was so close.
I know you got soul: machines with that certain something Page 12