Recognizing that the future of oil-built Texas depended upon securing enough freshwater, some Texan leaders schemed, and failed, in the late 1960s to steal a march on their regional neighbors by launching an outsized, technically complex, and extremely costly interstate Texas Water Plan to transfer flow from the Mississippi River and pump it across the state to the high plains of west Texas. Robbing one heavily used water ecosystem to replenish another offered no fundamental fix to the depletion challenge. But it did provide a foretaste of the extreme kind of political and resource competition that lay ahead as parts of the Ogallala ran dry.
From the San Joaquin Valley in California’s Central Valley and metropolitan Phoenix to El Paso and Houston, Texas, water tables in many arid regions were falling precipitously, causing land subsidence and salt contamination of drinking water and farmland. Despite the respite from California’s great water-moving projects, unregulated overpumping in the Central Valley had resumed at such a furious pace that the groundwater tables had plunged up to 400 feet and the land itself had fallen 50 feet in some places. Even the rivers, lakes, wetlands, shallow groundwater, and interrelated water ecosystems of the country’s rainy, eastern half were also under growing stress from the intense demands of population and industrial growth. In south central Florida, the straightening, damming, and redirection of streams to benefit the region’s large sugar growers had disrupted the fragile Everglades wetlands, which were drying up and shrinking. As clean, fresh surface water became less available across America, groundwater resources were being overdrawn to make up the shortfall. In the thirty years leading up to 1996, total U.S. groundwater usage more than doubled to account for one-fourth of all U.S. water usage.
Although America was one of the world’s most water-rich countries, with 8 percent of the world’s replenishable freshwater but only 4 percent of its population, shortages of fresh, clean water were starting to impinge upon many regions’ patterns of growth, fomenting a new politics of resource competition among neighbors used to plenty. It wasn’t that the country didn’t have enough total water to meet its needs. Rather it was that its profligate use was finally exhausting the productive limits created by the innovative successes of its age of giant dams. The era of cheap, plentiful water was closing. New technologies and more efficient usage were needed. As throughout water history, the success of one era was seeding the defining challenge of the next.
America’s age of great dams drew to a close during the 1970s. By then, virtually all the best large dam sites had been exploited. Hardly a major river flowed freely across America’s landscape without being interdicted by dams and stored behind reservoirs. While the earliest dams from Hoover onward had returned the largest economic gains for the lowest subsidies, the later ones, by and large, had been built at the more marginal sites, carried the largest subsidies, and had hardly provided any net economic benefit at all. Yet even as the dam-building boom tapered off, demand for more freshwater and hydropower continued to escalate to meet growing populations, intensifying the political struggle among users to control a greater share of the limited, indispensable liquid resource.
The Colorado River told the tale. By 1964 an array of 19 large dams and reservoirs held four times the river’s annual flow and gave man total management over the Colorado system. No longer did the river remotely resemble the wildly surging, unpredictably flooding river explored by John Wesley Powell almost a century earlier. Each drop was measured, every release calculated, and every event on the river planned by its central managers. It was the lifeblood of the entire southwestern United States. Every drop was used and reused 17 times before reaching the sea. As demand for its water increased, it also became the most litigated river in the world. By the 1950s Southern California was not only consuming its full 4.4 million acre-feet entitlement under the 1922 water sharing compact, but also was starting to take up to an additional 900,000 acre-feet of unused flow allotted to other states. A Supreme Court ruling in 1963 instigated by fast-growing Arizona, which feared California would claim a permanent right to the water that was otherwise part of its allocation, put a legal hold on California’s water overuse—although the political showdown to make it practicable did not occur for another forty years. As the water needs of Arizona and other basin states increased toward their full allocations, something had to give.
The first to feel the squeeze was Mexico. During the 1950s an average annual 4.24 million acre-feet had flowed across the border into Mexico, which used it for irrigation and to replenish the lagoons of the river’s lush delta. In the 1960s, the average flow plummeted to the 1.5 million acre-feet minimum entitlement under the 1944 treaty, and the river rarely again reached the sea. Deprived of water and silt, the delta ecosystem shrank into an almost lifeless, salt flat wasteland with a few strips of irrigated cropland. Worse still for Mexico, its 1.5 million acre-feet had become so briny as to be almost worthless for irrigation. The transformation of the Colorado by damming and intensive irrigation had also changed the river’s composition as well as its volume. Sediment trapped behind the dams made the river much less silty. Irrigators could partly compensate for the loss of naturally refreshing silt flood deposits by intensive use of artificial fertilizers. But the drainage backflow of used irrigation water contaminated the river with high levels of salts leached from the cropland; by 1972, salinity at the river’s halfway point had increased two and a half times over its natural, predam state. Salinity accumulations were highest downriver at the Mexican border. For more than a decade, the United States had rejected Mexico’s protests that the 1944 treaty guaranteed it 1.5 million acre-feet of irrigation-quality water. Then, in 1973, perhaps mindful of the discovery of large oil fields in offshore Mexico, American diplomats finally agreed to deliver water with an acceptable salt content.
While competition for Colorado water intensified, the river’s managers also made the awful discovery that the 1922 Colorado River Compact’s baseline estimate of 17.5 million acre-feet per year had been much, much too optimistic. The eighteen-year streamflow data on which it had been measured covered an unusually wet period; by 1965 the Bureau of Reclamation knew that longer-term data suggested an average flow of only about 14 million acre-feet. Subtracting Mexico’s 1.5 million and another 1.5 million for evaporation from the giant man-made storage lakes left only 11 million to be divided among states whose irrigation, hydroelectricity, and urban drinking water projects, when built to full capacity, depended upon receiving all the anticipated 15 million acre-feet. The government-brokered compact simply promised more water than it could deliver.
The reckoning day for the Colorado water shortage was postponed by an extremely wet decade from the late 1970s and by reservoir draw-downs from Lake Mead and other storage facilities on the river. The full impact of overallocation finally began to be felt with the long drought in the first decade of the twenty-first century. The river’s flow at the Compact’s official delivery point from upper to lower basin states at Lee Ferry, Arizona, sank to its lowest level since measurements began in 1922. As Lake Mead, with its 28 million acre-feet capacity, drained to less than half full, water managers scrambled to develop emergency plans in the event it continued to sink below the level of Hoover’s intake pipes. A growing body of long-term climate evidence from tree rings, moreover, suggested that the 1900s might have been a relatively moist century. A return to normal climate patterns thus would likely make the southwest even hotter and drier; another megadrought, like the speculated one that may have obliterated native farming civilizations early in the last millennium, was a possibility. Whether man-made or natural, the warmer weather in the Far West over the thirty years to the mid-2000s was already discernibly diminishing Colorado water flows by reducing the winter mountain snowpacks and the replenishing spring runoff it brought when it melted, while also increasing the evaporation loss from reservoirs. The prospect of chronic Colorado River water shortages menaced the basin’s 30 million with economic slowdown, possible chronic water crises in large de
sert cities like Las Vegas and Phoenix, and chaotic political clashes for water among compact states and among metropolitan, industrial, and farm users within them.
The Colorado River shortages signified the dawning of a new Far Western water era marked by supply limitations and ecosystem depletions that demanded fresh responses including alternative technologies, conservation, organizational redeployment of scarce water resources, and new approaches to water management. One of the largest problematic legacies of successful irrigation of the arid west was the extreme economic misallocation caused by the lavish government subsidy for large farm businesses, which consumed over two thirds of the river water and whose runoff by far caused the greatest damage to underlying ecosystems. Such subsidies had served their original purpose in fostering western agricultural development, but long ago had outlived their usefulness. In California, four of every five farms were over 1,000 acres and 75 percent of the state’s entire agricultural output came from just 10 percent of the farms. By the late twentieth century, vested agribusinesses had become privileged Water Haves who paid almost nothing for the region’s scarce water, while more economically productive and water-efficient industries and cities were taxed by having to pay burdensome premiums of up to 15 to 20 times more to obtain enough. The efficient allocation mechanism of competitive market forces was being grossly distorted, with perverse impacts on economic growth, environmental resources, and basic fairness.
The end of the age of great dams in the United States occurred in the 1970s when an alliance of environmentalist, urban, and recreation industry lobbyists, armed with arguments proving the uneconomic returns of new large dams, united to gradually offset the overrepresentation of irrigation and dam interests in state and federal politics. The breakthrough event came in the late 1960s when the Sierra Club, founded in 1892 by naturalist John Muir and other Californians, rallied a national political effort to defeat proposals to dam the nationally hallowed natural wonder of the Grand Canyon. From then on, the national debate turned increasingly to offsetting the deleterious environmental by-products of dams, such as the drying up of deltas and wetlands, the heavy dependence they promoted on artificial fertilizers, pesticides, herbicides, and monoculture farming, the trapping of soil-replenishing silt, the destruction of river wildlife—the Columbia River’s 15 million wild salmon fishery had collapsed to under 2 million because the fish couldn’t surmount the dams to return to their spawning grounds, for instance. By the late twentieth century, the main discussion about dams was their decommissioning and removal—indeed, in the United States decommissioning surpassed new construction by 2000.
America’s antidam campaign had gained impetus from the vibrant, grassroots environmentalist movement that had sprung up in reaction to the mounting evidence that mankind was inadvertently poisoning itself with the detritus of industrial growth. Just as the large urban concentrations of the early nineteenth-century Industrial Revolution created foul sanitary conditions that threatened the habitability of large cities and produced the sanitary awakening, rapid industrialization produced unwholesome accumulations of unwanted industrial and agribusiness pollution of society’s public waters, air, and soils that was midwife to the modern environmental movement. Over the decades surface freshwater rivers and lakes, seacoasts, and slow-moving, unseen groundwater ecosystems had grown increasingly contaminated. By the mid-twentieth century a new phenomenon—water pollution on a scale and intensity that overwhelmed natural ecosystems’ restorative capacities—began to visibly threaten both public health and the long-term environmental sustainability of unfettered economic growth. Before World War II, the overwhelming proportion of pollution emanated from the smokestack technology cluster that burned fossil fuels and produced heavy metals like iron and steel. After World War II hundreds of new plastics, agricultural fertilizers and other synthetic chemicals—many extremely toxic and difficult for natural forces to degrade—became increasingly major pollutants.
For decades chemical companies dumped untreated toxic wastes into local rivers, ponds, and streams, where they leached into groundwater drinking sources and years later brought illness and death to uncounted thousands. By 1980 the United States had more than 50,000 toxic waste dumps. In one infamous incident, residents and schoolchildren in Love Canal, a neighborhood in Niagara Falls, New York, built on landfill atop a toxic waste dump site, suffered abnormally high rates of cancers and birth defects a generation later. The area was declared a disaster zone and evacuated. Similar horror stories emerged in other countries. Japanese children around Minamata Bay, for instance, showed brain damage after 1956 from eating fish contaminated by the mercury dumped years earlier by a local chemical factory. Islands of toxic waste as long as 18 miles long and three miles wide formed in the Soviet Union over one-mile-deep Lake Baikal, the world’s largest freshwater lake. North America’s Great Lakes, holding about 20 percent of Earth’s fresh surface water, also showed the pollution from the heavy industrial activity around its shores; by the early 1960s much of Lake Erie’s fish life had suffocated due to algae blooms run amok from fertilizer runoff and dumping of wastes. Similarly, a large part of the once rich Baltic Sea fishery had become biologically dead from northern Europe’s heavy industrial sewage and chemical fertilizer effluents, above all those drained by communist Poland’s filthy Vistula River. Acid rain caused by rising sulfur dioxide emissions from industrial smelters and burning fossil fuels contaminated freshwater sources and food chains across national boundaries; the sulfur dioxide emitted in a single decade in the late 1980s from Ontario’s giant copper and nickel smelters alone was estimated to have exceeded the entire volume released naturally by all the volcanoes in Earth’s history. Nuclear weapons production by the Cold War superpowers also polluted rivers and lakes in America and the U.S.S.R. with deadly radioactive waste.
If the modern environmentalist movement had a specific birth moment it came in 1962 with the publication of a seminal book, Silent Spring. Written by Rachel Carson, a former U.S. government aquatic biologist, Silent Spring focused the national spotlight on the insidious, water polluting effects of synthetic chemical pesticides such as DDT that were widely applied to kill insects and improve crop yields, and drew attention to the larger ramifications it portended for what man was doing to his habitat. “The pollution entering our waterways comes from many sources: radioactive wastes from reactors, laboratories, and hospitals; fallout from nuclear explosions, domestic wastes from cities and towns; chemical wastes from factories,” Carson wrote. “To these is added a new kind of fallout—the chemical sprays applied to croplands and gardens, forests and fields…our waters have become almost universally contaminated with insecticides.” In vivid prose Carson, who had grown up on the banks of the Allegheny River near Pittsburgh and had witnessed firsthand the effects of industrial pollution from the coal-burning electric plants on the river’s ecosystems, synthesized many scientific studies into the bigger picture. “The problem of water pollution by pesticides can be understood only in context, as part of the whole to which it belongs—the pollution of the total environment of mankind.”
Observing that for the first time in earthly history, mankind in the twentieth century had gained sufficient power to substantially modify the natural surroundings, Carson worried that it was using it recklessly, polluting air, earth, rivers, and seas in irreversible ways perilous to civilization’s own survival. She concluded, “Along with the possibility of the extinction of mankind by nuclear war, the central problem of our age has therefore become the contamination of man’s total environment with such substances of incredible potential for harm—substances that accumulate in the tissues of plants and animals and even penetrate the germ cells to shatter or alter the very material of heredity upon which the shape of the future depends.”
The publication of Silent Spring immediately gave voice to the inchoate, gathering public concern about the environment. Almost overnight, the modern environmentalist movement became a potent political force. Big chemical compa
nies, the U.S. Department of Agriculture and others with perceived vested interests in maintaining the short-term status quo, like their counterparts in all eras, mounted a vigorous offensive against Silent Spring. Carson’s science, her professional credentials, and even her personal traits were assailed. Yet Silent Spring resonated deeply within countervailing constituencies of America’s pluralistic democracy. President John F. Kennedy took a personal interest. Several expert federal and state studies were duly undertaken and corroborated her allegations.
Before the decade was out, the new environmental movement had gathered unstoppable momentum. Action was further galvanized by a number of high-profile environmental disasters. None was more influential than the spectacular, five story high flames that combusted on Cleveland’s Cuyahoga River on June 22, 1969, from the sheets of unregulated, flammable wastes that had been dumped into the river. Within months, the United States took the regulatory lead by enacting comprehensive national environmental legislation and empowering the Environmental Protection Agency to execute it. The 1972 Clean Water Act, and the 1974 Safe Drinking Water Act, were passed to cleanse America’s surface and ground waters of pollution. Authorities began to tackle the immense problem of controlling intensive, algae blooms in lakes and coastal seashores. Endangered species were protected. DDT and other harmful chemical pesticides were banned domestically, although not their export to third world countries.
The first annual Earth Day on April 22, 1970, rallied 20 million Americans to support an environmentally healthy planet; twenty years later, 200 million people in 140 countries turned out. Environmentalism went global in the late 1980s. The United Nations played a leading role, starting with the influential 1987 report “Our Common Future,” known also as the “Brundtland Report” after its Norwegian chairwoman, that called for examining the relationship between economic growth and environmental sustainability. Thereafter it supported Earth Summits of heads of state every decade since 1992, an ongoing intergovernmental study of climate change from 1988, an influential commission on environmentally sustainable development in 1989, and the first comprehensive, five-year-long assessment of Earth’s total ecosystems inaugurated on the occasion of the millennium in 2000 and completed in 2005. International environmental treaties covering environmental problems from air pollution to global warming also were signed by many countries. From the early twenty-first century, water ecosystems received special attention. The U.N. published its first triennial World Water Development Report in 2003 and in 2005 launched the International Decade of Water for Life. Providing clean water and a healthy environment increasingly became a standard measure for domestic legitimacy around the world; horrendous environmental disasters helped undercut the political credibility of the Soviet Union before its collapse and were increasingly becoming focal points of democratic protests in early twenty-first-century China. Giant industrial corporations, such as General Electric, gradually embraced environmentalist agendas and attempted to redefine their images and activities as eco-friendly. Sadly, Rachel Carson never lived to see her handiwork come to fruition. She died of cancer in 1964, at age fifty-six, less than two years after Silent Spring’s publication.
Steven Solomon Page 40