Steven Solomon

Home > Other > Steven Solomon > Page 55


  With no technological panacea in view comparable to the giant dams and Green Revolution in the last century, the winning responses to the world’s water crisis are most likely to emerge fitfully out of a messy, muddling-through process of competitive winnowing and trial and error experimentation with diverse technologies, scales and modes of organization, as each locality and nation seeks to find solutions tailored to meet its particular conditions. Uncertainty, multiplicity, and fluidity are likely to characterize the landscape until clear trends emerge. Historically, Western democracies’ market economies have excelled at innovating and creating growth in just this sort of environment—indeed it is one of their main claims to fame. Centrally managed economies and authoritarian states, on the other hand, have tended to do best where technological trends are clear and the main challenge has been to apply them effectively. Thus the Western model enjoys a built-in organizational, as well as water resource, advantage in the unfolding global competition to find the most effective responses to the novel challenges of water scarcity.

  Yet history also bears witness that the West’s great water advances have been often brought forth by special leadership at key moments. Teddy Roosevelt’s visionary commitment at the turn of the twentieth century to exploit the undeveloped potential of America’s Far West by launching a new federal institution to promote irrigation and by building the Panama Canal stood out. Similarly, so did Franklin Roosevelt’s Depression-era commitment to swiftly multiply the benefits of the Hoover Dam by erecting similar government-built giant, multipurpose dams elsewhere in the country, and De Witt Clinton’s use of New York State financing for the Erie Canal early in the nation’s history to fulfill the founding fathers’ vision of opening a route through the Appalachians to the Mississippi Valley. By creating in each case a coherent environment with clear goals and reliable rules, these leaders inspired confidence among individuals and private enterprises whose participation was necessary for the achievement of their purpose. It is precisely such galvanizing, visionary leadership and reliable commitment to principles that is yet to arise today. Albeit, given the awareness and means in today’s world to resist the social and economic displacements often attenuating to such bold, society-changing projects, doing so is comparatively harder. Nevertheless, until it does, the full potential of the organizational innovation of enlisting market forces in the delivery of a sustainable environment—an invisible green hand mechanism that improves water productivity, allocation and ecosystem health through an automatic market price signal for water that reflects the full cost of water supply, delivery, cleansing and ecosystem maintenance—is likely to be impeded by embedded vested interests, incomplete frameworks, and rules of the game that are too uncertain to fully engage private market participants.

  Without any imminent solutions to the deepening global water scarcity crisis, water rich nations are likely to be buffeted by a growing number of unfamiliar foreign water shocks, much as they had been from oil in the latter twentieth century. Diplomatic standoffs, water violence, and possibly even water wars are likely to occur in overpopulated regions of extreme scarcity, such as the Middle East. Soaring world food prices, famines, and environmental spillover from the global quantum jump in resource consumption and waste generated by fast-growing Asian giants like China and India threatens to destabilize poor countries dependent upon good imports. When grain prices were spiking in the spring of 2008, World Bank president Robert Zoellick warned that without a new Green Revolution some 33 countries faced social unrest.

  The smooth functioning of the integrated global economy and the critical trade in oil and food also depends upon some nation, or group of nations, stepping forward to commit their navies to guarantee unimpeded supercontainer sea passage through nearly a dozen strategic straits and canals that are potential choke points if closed. Feasible threats include terrorists or pirates sinking an oil supertanker in the narrow, pirate-infested Strait of Malacca, a war that closes oil flows through the Strait of Hormuz at the mouth of the Persian Gulf, or a blockage of the Red Sea’s southern strait at Bab el Mandeb.

  Foreign policies are likely to be realigned and influenced by water-driven alliances, just as they were in the last century by oil. Saudi leasing of cropland in friendly nearby states; a similar, but ultimately unsuccessful effort by South Korea to secure the fruits of Madagascar’s potential farmland; and China’s provision of work crews and dams, bridges, and other water infrastructure to resource-rich African nations are possible harbingers of the formation of new virtual water and other resource-security and diplomatic blocs within the larger world order that could prove more bonding and outflank the defense umbrellas currently provided by the West. Indeed, water-based alliances could emerge as one of the new international paradigms of the post–Cold War order. New, nontraditional foreign policy thinking is required. Strategic alliances with other regional water Haves, for example, could offer many avenues for exerting increased leverage in many parts of the world. Turkey was already exerting its influence as the Middle East’s water superpower to act as broker—and presumptive water enforcer—of peace talks between Syria and Israel. Over four-fifths of fresh river water flowing to oil-rich Arab lands originates in non-Arab states. Under more dire and polarized political conditions as water grows scarcer, it is conceivable as a thought experiment—however highly unlikely in practice—to imagine the formation of a water bloc among Ethiopia on the headwaters of the Nile, Turkey on the Tigris-Euphrates, and Israel on the tiny Jordan, perhaps in league with a cartel among international exporters of food—virtual water—as a diplomatic countermeasure should Middle Eastern oil suppliers turn extremist and try to take excessive advantage of their disproportionate oil power. Similar considerations could apply in central Asia, where the currently dysfunctional state of Tajikistan has potential control over 40 percent of the region’s water sources and, through a program of giant dam-building, could deliver badly needed hydropower to nearby Afghanistan and Pakistan. Forward-looking Western foreign policy makers also have to be cognizant of the enormous leverage China’s control of Tibet gives it over the mountain sources of the great rivers, and therefore the economic and political fate, of Southeast Asia.

  Endless foreign policy challenges are also likely to emanate from the world’s abject water poor, roughly calculated as the one-fifth of humanity without access to enough clean water for their basic domestic needs of drinking, cooking and cleaning, the two in five without adequate sanitation, including simple pit latrines, and the 2 billion more whose lives are devastated every decade by their exposure to recurring water shocks like floods, landslides, and droughts. For the most part they live in Africa and Asia, both in failing states and poor, usually rural regions of developing ones. For them, progress is not primarily measured in terms of harnessing hydrological resources to enhance their productive society but in terms of brutal survival against the natural ravages of unmanaged water and the prevention of catastrophes stemming from the collapse of aging and often poorly built waterworks. As world population soars, so too will the absolute number of abject water poor and international spillover to the richer parts of the world. From India to Africa, hundreds of thousands of climate migrants are already on the march from unbuffered water shocks, shortages and infrastructure failures—there is no reason to expect that they will politely stop at their national or regional borders to quench their driving thirst for survival.

  On the hopeful side, a Western breakthrough in exportable techniques that dramatically increases existing water use productivity, improves sustainable water ecosystems, and enhances international food export supplies, of course, would quickly become a powerful lever to helping other nations and individual communities cope with their water scarcity challenges. Abundant production of internationally traded food could help strengthen the existing world political economic order by reassuring water-poor countries that their best interests lay in relying upon the liberal, free-trade region to provide, at fair prices, the food they need to imp
ort. They could yield extensive diplomatic goodwill for Western interests and promote indigenous democratic development in other parts of the world as well.

  But any such water-driven democratic development would likely require imaginative, flexible, and conditional solutions beyond solely large-scale, national government-ministry-directed projects of the twentieth-century variety, including a willingness to build upon and help revive traditional, small-scale water management practices from the precolonial era. In rural parts of India and central Asia where British colonialism did not penetrate with its centralized, modern water techniques, for example, some such traditional methods and local governing mechanisms have remained intact. Village built and managed water tanks in India offer small, local, partial, but helpful solutions to the nation’s great water storage shortages. In rural Afghanistan and eastern Iran, highly respected village mirabs, or water foremen, are still selected annually among local orchard growers and farmers who share a water source to set watering schedules and amounts and to settle disputes so that wellhead and upstream farmers do not consume more than their fair share before it flows to users at the bottom. The mirab system is remarkably reminiscent of the Dutch water parliaments that became a prototype for the founders of the Dutch Republic’s democracy, as well as of democratically functioning local institutions like Valencia’s public water court. It does not require too great a leap of thinking to imagine how expanding the power base of such long-established, local water institutions and practices might become one of the building blocks to rebuilding failed, or never fully formed, states that otherwise menace the world order.

  Although the water crisis of the world’s poorest has been on the international agenda and the subject of numerous, high-level meetings among serious-minded people since the 1970s, and the U.N. Millennium Development Goals, endorsed by world leaders at the second Earth Summit at Johannesburg in 2002, included a specific target of halving the proportion of people without access to clean water and basic sanitation by 2015, the truth is that the legions of the world’s water disenfranchised are continuing to swell. The familiar dynamics of ruthless indifference among those far away and diffused political power are at perpetual play. Moreover, one perverse, unintentional effect of the multilateral campaign for clean drinking and sanitary water has been to divert increased investment away from also badly needed food production infrastructure. Without a pressing crisis to rivet all world leaders’ serious attention, there is not nearly enough financial commitment from rich countries, nor even sufficient political will from government leaders of many suffering, water poor ones. In a changing global order without a single dominating world power to set the agenda, the task of rallying action is chiefly being left to an amorphous international process led by weak, multilateral institutions and diverse nongovernmental entities. If only a small fraction of the debate and study they have committed over the years had been translated into concrete action, the water crisis might have been solved many times over.

  Several promising principles have been enunciated. These include striking a balance between the “3 E’s”: Environmentally sustainable use of water; Equitable access by the world’s poor to fulfill their basic water needs and for communities to share in the benefits of local water resources with the poor; Efficient use of existing resources, including recognition of water’s value as an economic good. Yet no galvanizing consensus has emerged on how to practically realize these or other principles. As a result, the small army of jet-setting, water conference-goers often resemble the proverbial endless talking shop, issuing declarations of broad good intentions but disagreeing too much to get on board with concrete paths proposed to achieve them. This was illustrated at the third triennial World Water Forum held in Japan’s historic capital of Kyoto in 2003, impressively attended by 24,000. Conference-goers became embroiled in a furor over a report of a high-profile committee headed by former IMF managing director Michel Camdessus that proposed specific financial means to achieve the Millennium Development Goals for water. Citing the staggering investment sums needed—on the order of $180 billion globally per year—for water infrastructure, and recognizing the paltry commitments industrialized governments were willing to make, the Camdessus report strongly endorsed private sector participation; adding fuel to a controversial suggestion, it cited large-scale, centralized waterworks like dams as potential targets for private financing that are an anathema to activists who had fought against them on the World Commission on Dams. Protests erupted at the session where the Camdessus report was launched. Angry anti-private-market water activists, NGO representatives, and union members marched through the venue, and unfurled a banner that read, “Water for People, Not for Profits.”

  On current dynamics and trajectories, not only will the U.N.’s self-declared International Decade for Action “Water for Life” (2005–2015) likely expire without achieving the Millennium targets, but the massive dry shift in the global water continuum of Haves and Have-Nots will continue to lurch toward deepening scarcity. Countries with scarcity are likely to veer toward famine; countries already in water famine face greater human catastrophes and political upheavals. Overtaxed water ecosystems are likely to grow more and more depleted and less and less capable of sustaining their societies. As the gulf between those with sufficient water and those without deepens as a source of grievance, inequity and conflict, the new politics of scarcity in mankind’s most indispensable resource is becoming an increasingly pivotal fulcrum in shaping the history and environmental destiny of the twenty-first century.

  EPILOGUE

  Looking back over time brings into relief the close association between breakthrough water innovations and many of the turning points of world history. From about 5,000 to 5,500 years ago, following several millennia of experimentation and development, large-scale irrigated agriculture in the arid, flooding river valleys of the Middle East’s Fertile Crescent and the Indus River, and along the Yellow River’s soft loess plateaus, provided the technological and social organizational basis for the start of modern human civilization. During the same period, man began transporting large cargoes on rivers and along seashores in reed and wooden sailing vessels, eventually aided by a steering rudder. Sailing in turn, nurtured the rise of international sea trade and Mediterranean civilizations where indigenous agricultural conditions were relatively poor. Civilization’s slow march through rain-watered, cultivatable lands began in earnest a little under 4,000 years ago with the spread of plow agriculture that allowed more intensive farming over a greater expanse of cropland through the application of animal power.

  Mastery of the art of quenching red hot iron in water to make steel weapons and tools about 3,000 years ago made possible construction of qanats and aqueducts, which reliably conveyed enough freshwater to sustain the rise of the great cities that anchored every civilization. The inland expansion of civilization was facilitated by the innovation of transport canals that connected natural waterways, starting in China 2,500 years ago and replicated everywhere with great impact over the centuries from southern France’s seventeenth-century Canal du Midi to America’s nineteenth-century Erie Canal. Some 500 years ago, global distance barriers were defeated by Europeans’ momentous discovery of how to sail back and forth across the open oceans; from the mid-nineteenth century, interoceanic sailing times were compressed by the cutting of great sea canals for new, speedy steamships and gunboats that forged the world order of the colonial age.

  Just prior to start of the Christian Era 2,000 years ago the seminal invention of the waterwheel captured the power of flowing water to turn mills to grind man’s daily bread; a thousand years later water-power was applied with more complex gearing to a widening array of industrial applications and ultimately, a quarter of a millennium ago, to power the first factories. The waterpower barrier was finally shattered by the steam engine in the late eighteenth century—arguably the greatest invention of the last millennium which catalyzed the defining innovations of the Industrial Revolution—and wa
s transcended yet again by hydroelectric power in the late nineteenth century and a panoply of water-assisted power generation inventions in the twentieth century. The sanitary revolution helped foment transformations in human health, demography, and clean drinking water that sustained massive modern industrial urban concentrations. Less than a century ago, 5,000 years after the original big dams of antiquity, history’s first giant, multipurpose dams began harnessing the planet’s great rivers to deliver electricity, irrigation water, and flood control on a massive scale that remade landscapes at a stroke and was vital to launching the worldwide Green Revolution that nourished humanity’s stunning population surge. Modern industrial technologies also permitted man to mine the earth of water from its deep underground reservoirs as he had drilled oil, and to pump the water unprecedented distances over and beyond mountains in long-distance aqueducts. By the end of the twentieth century, an ocean fleet of intermodal supercontainers speedily delivering goods ordered from foreign factories from a nearly real-time information web to local markets across the planet served as the transport backbone of the new, integrated global economy.

 

‹ Prev