Einstein's Clocks and Poincare's Maps

Home > Other > Einstein's Clocks and Poincare's Maps > Page 38
Einstein's Clocks and Poincare's Maps Page 38

by Peter Galison


  “Report of the Committee on Standard Time, May 1879” [Dec. 1878–Dec. 1879]. In Proceedings of the American Metrological Society 2 (1882), pp. 17–44.

  “Report of the Director to the Visiting Committee of the Observatory of Harvard University.” In Annals of Astronomical Observatory of Harvard College, Vol. 1.

  Report of the Superintendent of the Coast Survey, Showing the Progress of the Survey During the Year 1860 (resp. 1861, 63, 64, 65, 67, 70, 74). Washington: U.S. Government Printing Office, 1861 (resp. 1862, 64, 66, 67, 69, 73, 77).

  Rothé, Edmond. 1913. Les applications de la Télégraphie sans fil: Traité pratique pour la réception des signaux horaires. Paris: Berger-Levrault.

  Roussel, Joseph. 1922. Le premier livre de l’amateur de T.S.F. Paris: Vuibert.

  Roy, Maurice, and René Dugas. 1954. “Henri Poincaré, Ingénieur des Mines.” In Annales des Mines 193, pp. 8–23.

  Rynasiewicz, Robert. 1995. “By Their Properties, Causes and Effects: Newton’s Scholium on Time, Space, Place and Motion, Part I: The Text.” In Studies in History and Philosophy of Science 26, pp. 133–53; “Part II: The Context,” pp. 295–321.

  Sarrauton, Henri de. 1897. L’heure décimale et la division de la circonférence. Paris: E. Bernard.

  Schaffer, Simon. 1992. “Late Victorian Metrology and Its Instrumentation: A Manufactory of Ohms.” In Invisible Connections. Instruments, Institutions, and Science, eds. Robert Bud and Susan E. Cozzens. Washington: Spie Optical Engineering Press, pp. 23–56.

  Schaffer, Simon. 1997. “Metrology, Metrication and Victorian Values.” In Victorian Science in Context, ed. Bernard Lightman. Chicago: The University of Chicago Press, pp. 438–74.

  Schanze, Oscar. 1903. Das schweizerische Patentrecht und die zwischen dem Deutschen Reiche und der Schweiz geltenden patentrechtlichen Sonderbestimmungen. Leipzig: Harry Buschmann.

  Schiavon, Martina. n.d. “Savants officiers du Dépôt général de la Guerre (puis Service Géographique de l’Armée). Deux missions scientifiques de mesure d’arc de méridien de Quito (1901–1906).” In Revue Scientifique et Technique de la Défense, forthcoming.

  Schilpp, Arthur Paul (ed.). 1963. The Philosophy of Rudolf Carnap. (The Library of Living Philosophers, Vol. XI.) London: Cambridge University Press. Schilpp, Arthur Paul. 1970. Albert Einstein: Philosopher-Scientist, two Vols. La Salle: Open Court.

  Schlick, Moritz. 1987. “Meaning and Verification.” In idem, Problems of Philosophy. (Vienna Circle Collection 18), ch. 14, pp. 127–33.

  Schlick, Moritz. 1987. The Problems of Philosophy in Their Interconnection. Winter Semester Lectures, 1933–34. Eds. Henk L. Mulder, A. J. Kox, and Rainer Hegselmann. Boston: D. Reidel Publishing Company.

  Schmidgen, Henning. n.d. Time and Noise: On the Stable Surroundings of Reaction Experiments (1860–1890), forthcoming.

  Seelig, Carl (ed.). 1956. Helle Zeit—Dunkle Zeit. Jugend-Freundschaft-Welt der Atome. In Memoriam Albert Einstein. Zürich: Europa Verlag.

  Septième conférence géodésique internationale. Rome: Imprimerie Royale D. Ripamonti, 1883.

  Shaw, Robert B. 1978. A History of Railroad Accidents. Safety, Precautions, and Operating Practices. Binghamton, NY: Vail-Ballou Press.

  Sherman, Stuart. 1996. Telling Time. Clocks, Diaries, and English Diurnal Form, 1660–1785. London, Chicago: The University of Chicago Press.

  Shinn, Terry. 1980. Savoir scientifique et pouvoir social. L’École Polytechnique. Préface de François Furet. Paris: Presses de la Fondation Nationale des Sciences Politiques.

  Shinn, Terry. 1989. “Progress and Paradoxes in French Science and Technology 1900–1930.” In Social Science Information 28, pp. 659–83.

  Smith, Crosbie, and M. Norton Wise. 1989. Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge: Cambridge University Press.

  Sobel, Dava. 1995. Longitude. The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. New York: Walker and Company.

  Staley, Richard. 2002. “Travelling Light.” In Instruments, Travel and Science, eds. Marie-Noëlle Bourguet, Christian Licoppe, and H. Otto Sibum. New York: Routledge.

  Stephens, Carlene E. 1987. “Partners in Time: William Bond & Son of Boston and the Harvard College Observatory.” In Harvard Library Bulletin 35, pp. 351–84.

  Stephens, Carlene E. 1989. “‘The Most Reliable Time’: William Bond, the New England Railroads, and Time Awareness in the 19th-Century America.” In Technology and Culture 30, pp. 1–24.

  Taylor, Edwin, and John Wheeler. 1966. Spacetime Physics. New York: W.H. Freeman.

  Urner, Klaus. 1980. “Vom Polytechnikum zur Eidgenössischen Technischen Hochschule: Die ersten hundert Jahre 1855–1955 im Ueberblick.” In Eidgenössische Technische Hochschule Zürich. Festschrift zum 125jährigen Bestehen (1955–1980). Zürich: Verlag Neue Zürcher Zeitung, pp. 17–59.

  Walter, Scott. 1999. “The non-Euclidean Style of Minkowskian Relativity.” In The Symbolic Universe, ed. Jeremy Gray. Oxford: Oxford University Press.

  Warwick, Andrew. 1991/1992. “On the Role of the FitzGerald-Lorentz Contraction Hypothesis in the Development of Joseph Larmor’s Electronic Theory of Matter.” In Archive for History of Exact Sciences 43, pp. 29–91.

  Warwick, Andrew. 1992/1993. “Cambridge Mathematics and Cavendish Physics: Cunningham, Campbell and Einstein’s Relativity 1905–1911. Part I: The Uses of Theory.” In Studies in History and Philosophy of Science 23, pp. 625–56; “Part II: Comparing Traditions in Cambridge Physics.” In idem, 24 (1993), pp. 1–25.

  Weber, R., and L. Favre. 1897. “Matthäus Hipp, 1813–1893.” In Bulletin de la société des sciences naturelles de Neuchâtel 24, pp. 1–30.

  Welch, Kenneth F. 1972. Time Measurement. An Introductory History. Baskerville: Redwood Press Limited Trowbridge Wiltshire.

  Whittaker, Edmund. 1953. A History of the Theories of Aether and Electricity. Vol. II: The Modern Theories 1900–1926. New York: Harper & Brothers, reprinted 1987.

  Wise, Norton M. 1988. “Mediating Machines.” In Science in Context 2, pp. 77–113.

  Wise, Norton M. (ed.). 1995. The Values of Precision. Princeton, NJ: Princeton University Press.

  Wise, Norton M., and David C. Brock. 1998. “The Culture of Quantum Chaos.” In Studies in the History and Philosophy of Modern Physics 29, pp. 369–89.

  INDEX

  Page numbers in italics refer to illustrations.

  Abbe, Cleveland

  Abraham, Max

  absolutes:

  of movement

  of time

  Academy of Sciences

  Quito expedition overseen by

  Acta Mathematica

  action-reaction principle

  Adams, John Couch

  A. De Peyer and A. Favarger et Cie

  AEG (Allgemaine Elektrizitäts Gesellschaft)

  Africa, in global mapmaking network

  Agostinelli, L.

  Air Force, U.S., signal technology of

  Airy, George Sir

  Alder, Ken

  algebra, vs. geometry

  Alembert, Jean Le Rond d’

  Alfaro, Eloy

  Allen, William F.

  Allgemaine Elektrizitäts Gesellschaft (AEG)

  almanacs:

  astronomical

  sunrise/sunset times in

  Alsace-Lorraine

  American Association for the Advancement of Science

  American Metrological Society

  American Society of Civil Engineers

  anarchism

  Andes, mapping expedition in

  Andrade, Jules

  Anschütz-Kaempfe

  Anschütz-Kaempfe, Hermann

  antimeridian

  antipositivism

  Aristotle

  Arthur, Chester A.

  Asia

  Asia, in global electromapping network

  asteroids, orbital motion of

  astronomy:

  in clock coordination

  date-change times in
/>
  in longitude determination

  Atlantic Ocean:

  longitude mapping of

  telegraph cables across

  atomism

  Aubin, David

  Avenarius, Richard

  Bain, Alexander

  Barkan, Diana Kormos

  Barnard, Frederick A. P.

  Barrow-Green, June

  Barthes, Roland

  Bartky, Ian R.n

  Becquerel, Edmond

  Becquerel, Henri

  Bergson, Henri

  Berlin, Germany:

  master clock of

  Paris clock coordination with

  Berlin Observatory

  Bern, Switzerland:

  clock synchronization in

  patent office in

  train station of

  Bertillon, Alphonse

  Besso, Michele

  Bigg, Charlotte

  Birkhoff, George D.

  Bloch, Léon

  Boer War

  Bologna Academy of Science

  Boltzmann, Ludwig

  Bonaparte, Prince Roland

  Bond, W. C.

  Bonnefoy, Marcel Paul

  Bonnet, Ossian

  Bordeaux Observatory

  Bossuet, Jacques-Bénigne

  Boston, Mass.:

  clock-coordination system of

  standard time adopted in

  Boudenoot law

  Bouguer, Pierre

  Bourdin, Martial

  Boutroux, Aline Poincaré

  Boutroux, Emile

  “Brain of Einstein” (Barthes)

  Brazil, in global telegraph network

  Breteuil Observatory

  British Cable

  Brock, David C.

  Broglie, Louis de

  Broglie, Maurice de

  Bucherer, Alfred

  Bureau des Longitudes

  Eiffel radio time backed by

  global mapping efforts of

  on Paris-London longitudinal difference

  Polytechnicians at

  presidents of

  Quito mapping expedition of

  on time decimalization

  Burnett, Graham D.

  Cahan, David

  Calinon, Auguste

  Canales, Jimena

  Canary Islands, prime meridian set in

  Carnap, Rudolf

  Cassidy, David

  Catholic Church

  Cauchy, Augustin Louis

  celestial mechanics

  as chaos vs. stability

  three-body problem in

  Celestial Mechanics (Laplace)

  centimeter-gram-second system (CGS)

  Central and South American Cable

  chaos

  Charlemagne

  Chicago, Ill., observatory time signals in

  Christie, William

  church clocks

  circumference, degrees of

  Civil War, U.S.

  Clarke, Colonel

  clock coordination:

  American method of

  by astronomical observation

  as democratic goal

  early efforts at

  electric distribution of

  with light signals

  longitude determination linked to

  mathematics of electric signals in

  multiple strains in modernist move toward

  patents connected with

  pneumatic systems of

  precision of

  public protests against

  radio transmissions used in

  by railroads vs. observatory time signals

  satellite-based

  in special relativity theory

  in Switzerland

  technology vs. theoretical basis of

  telegraph transmission time considered in

  U.S. promotion of

  clocks:

  astronomical

  atomic

  on churches

  as convenient measurement format

  on decimal time system

  electric pendula designed for

  minute hands on

  as recording mechanisms

  seagoing

  coal mines

  Coast and Geodetic Survey, U.S.

  Cohn, Emil

  Colin, Captain

  Columbus, Christopher

  compasses, gyroscopic

  Comte, Auguste

  Congress, U.S.

  on prime meridian

  river surveys ordered by

  Connaissance des Temps

  Connecticut, railroads vs. observatory time signals in

  Conrad, Joseph

  conventionalism

  of geometry

  pedagogical

  in philosophy

  in physics

  of simultaneity

  Convention of the Meter

  conventions, international

  as diplomatic instruments

  prime meridian as

  proliferation of

  telegraph transmission time reflected in

  of weights and measures

  Cornu, Alfred

  astronomical clock built by

  on decimalization

  electrosynchronization analyzed by

  at Polytechnique

  critical opalescence

  Critical Study of Mechanics (Calinon)

  Cunningham, Ebenezer

  curves

  Dakar, Senegal, time-synchronized mapping project at

  Darrigol, Olivier

  Daston, Lorraine

  Davy, Humphrey

  Davy lamps

  day, start of

  Dean, George

  Dearborn Observatory

  Débarbat, Suzanne

  de Bernardières, Octave

  Decazes, Duc Louis

  decimalization

  of circumference

  of electrical units

  of metric system

  of time

  Dedekind, Julius Wilhelm Richard

  de la Grye, Bouquet

  de la Noë, General

  Delaune, M.

  Descartes, René

  differential equations

  diplomacy, international conventions as instruments of

  Disclosure on Universal History (Bossuet)

  Dohrn-van Rossum, Gerhard

  Doucey, Emile

  Dowd, Charles

  Dreyfus, Alfred

  Drude, Paul

  Dudley Observatory

  Dumas, Jean Baptiste André

  earth:

  clock time based on rotation of

  satellite surveys of

  shape of

  Eastern Telegraph Company

  eclipses, solar

  Ecole des Mines

  Ecole Polytechnique

  alternative theories presented at

  in electric time coordination project

  entrance examinations of

  ETH vs.

  history of

  mechanics theory as factory stamp of

  theory vs. practical application at

  Ecole Professionelle Supérieure des Postes et Télégraphes

  Ecuador, French mapping expedition to

  Eddington, Arthur

  Edison, Thomas

  Edson, Franklin

  Eidgenössische Technische Hochschule (ETH)

  Eiffel, Gustave

  Eiffel Tower, radio signals transmitted from

  Einstein, Albert:

  academic appointments of

  antiauthoritarian stance of

  childhood of

  clocks in milieu of on clock synchronization

  education of

  electromechanical devices as fascination of

  on energy

  ether theories rejected by

  family business of

  on four-dimensional spacetime

  on general relativity

  on impact of special relativity theory

  later career of

  light-
signal clock proposed by

  on Lorentz

  on Mach

  magnetic atom theory of

  mass/energy equation of

  Nazi-era attacks on

  on Newton

  1905 relativity paper of

  observable procedures required by

  otherworldy public image of

  in patent office

  Poincaré’s influence on

  Poincaré’s meeting with

  political beliefs of

  on quantum physics

  scientific milieu of

  scientific philosophy of

  simultaneity addressed by

  on solitude

  on thermodynamics

  as tutor

  on velocity of light

  writing style of

  Einstein, Hermann

  Einstein, Jakob

  Einstein-de Haas effect

  Ekeland, Ivar

  electrical industry, standard units of

  electricity:

  etheric theories on

  practical applications of

  electrodynamics

  empiricism, idealism vs.

  energy

  conservation of

  mass vs.

  engineering schools

  Enlightenment

  entropy

  ephemerides

  equator

  equivalence principle

  ETH (Eidgenössische Technische Hochschule)

  ether

  contraction hypothesis on motion in

  Einstein’s rejection of

  Euclidean geometry

  Euler, Leonhard

  Evans, F. J. O.

  Faidherbe, Louis

  falling bodies, mechanics of

  Favarger, Albert

  Faye, Hervé

  Félix, Victor

  Ferdinand, Archduke

  Ferrié, Gustave-Auguste

  Ferro (island)

  fields

  Fizeau, Armand-Hippolyte

  Fleming, Sandford

  Flückiger, Max

  Fölsing, Albrecht

  Förster, Wilhelm

  France:

  anarchist actions in

  British cable control resented in

  coal mines of

  colonies of

  decimalized time proposed in

  diplomacy of

  in global electromapping effort

  Greenwich prime meridian resisted in

  metric system designed in

  patent criteria in

  political metaphor of time coordination in

  radio time systems in

  science education in

  Franco-Prussian War

  Frelinghuyser, Frederick T.

 

‹ Prev