“Report of the Committee on Standard Time, May 1879” [Dec. 1878–Dec. 1879]. In Proceedings of the American Metrological Society 2 (1882), pp. 17–44.
“Report of the Director to the Visiting Committee of the Observatory of Harvard University.” In Annals of Astronomical Observatory of Harvard College, Vol. 1.
Report of the Superintendent of the Coast Survey, Showing the Progress of the Survey During the Year 1860 (resp. 1861, 63, 64, 65, 67, 70, 74). Washington: U.S. Government Printing Office, 1861 (resp. 1862, 64, 66, 67, 69, 73, 77).
Rothé, Edmond. 1913. Les applications de la Télégraphie sans fil: Traité pratique pour la réception des signaux horaires. Paris: Berger-Levrault.
Roussel, Joseph. 1922. Le premier livre de l’amateur de T.S.F. Paris: Vuibert.
Roy, Maurice, and René Dugas. 1954. “Henri Poincaré, Ingénieur des Mines.” In Annales des Mines 193, pp. 8–23.
Rynasiewicz, Robert. 1995. “By Their Properties, Causes and Effects: Newton’s Scholium on Time, Space, Place and Motion, Part I: The Text.” In Studies in History and Philosophy of Science 26, pp. 133–53; “Part II: The Context,” pp. 295–321.
Sarrauton, Henri de. 1897. L’heure décimale et la division de la circonférence. Paris: E. Bernard.
Schaffer, Simon. 1992. “Late Victorian Metrology and Its Instrumentation: A Manufactory of Ohms.” In Invisible Connections. Instruments, Institutions, and Science, eds. Robert Bud and Susan E. Cozzens. Washington: Spie Optical Engineering Press, pp. 23–56.
Schaffer, Simon. 1997. “Metrology, Metrication and Victorian Values.” In Victorian Science in Context, ed. Bernard Lightman. Chicago: The University of Chicago Press, pp. 438–74.
Schanze, Oscar. 1903. Das schweizerische Patentrecht und die zwischen dem Deutschen Reiche und der Schweiz geltenden patentrechtlichen Sonderbestimmungen. Leipzig: Harry Buschmann.
Schiavon, Martina. n.d. “Savants officiers du Dépôt général de la Guerre (puis Service Géographique de l’Armée). Deux missions scientifiques de mesure d’arc de méridien de Quito (1901–1906).” In Revue Scientifique et Technique de la Défense, forthcoming.
Schilpp, Arthur Paul (ed.). 1963. The Philosophy of Rudolf Carnap. (The Library of Living Philosophers, Vol. XI.) London: Cambridge University Press. Schilpp, Arthur Paul. 1970. Albert Einstein: Philosopher-Scientist, two Vols. La Salle: Open Court.
Schlick, Moritz. 1987. “Meaning and Verification.” In idem, Problems of Philosophy. (Vienna Circle Collection 18), ch. 14, pp. 127–33.
Schlick, Moritz. 1987. The Problems of Philosophy in Their Interconnection. Winter Semester Lectures, 1933–34. Eds. Henk L. Mulder, A. J. Kox, and Rainer Hegselmann. Boston: D. Reidel Publishing Company.
Schmidgen, Henning. n.d. Time and Noise: On the Stable Surroundings of Reaction Experiments (1860–1890), forthcoming.
Seelig, Carl (ed.). 1956. Helle Zeit—Dunkle Zeit. Jugend-Freundschaft-Welt der Atome. In Memoriam Albert Einstein. Zürich: Europa Verlag.
Septième conférence géodésique internationale. Rome: Imprimerie Royale D. Ripamonti, 1883.
Shaw, Robert B. 1978. A History of Railroad Accidents. Safety, Precautions, and Operating Practices. Binghamton, NY: Vail-Ballou Press.
Sherman, Stuart. 1996. Telling Time. Clocks, Diaries, and English Diurnal Form, 1660–1785. London, Chicago: The University of Chicago Press.
Shinn, Terry. 1980. Savoir scientifique et pouvoir social. L’École Polytechnique. Préface de François Furet. Paris: Presses de la Fondation Nationale des Sciences Politiques.
Shinn, Terry. 1989. “Progress and Paradoxes in French Science and Technology 1900–1930.” In Social Science Information 28, pp. 659–83.
Smith, Crosbie, and M. Norton Wise. 1989. Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge: Cambridge University Press.
Sobel, Dava. 1995. Longitude. The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. New York: Walker and Company.
Staley, Richard. 2002. “Travelling Light.” In Instruments, Travel and Science, eds. Marie-Noëlle Bourguet, Christian Licoppe, and H. Otto Sibum. New York: Routledge.
Stephens, Carlene E. 1987. “Partners in Time: William Bond & Son of Boston and the Harvard College Observatory.” In Harvard Library Bulletin 35, pp. 351–84.
Stephens, Carlene E. 1989. “‘The Most Reliable Time’: William Bond, the New England Railroads, and Time Awareness in the 19th-Century America.” In Technology and Culture 30, pp. 1–24.
Taylor, Edwin, and John Wheeler. 1966. Spacetime Physics. New York: W.H. Freeman.
Urner, Klaus. 1980. “Vom Polytechnikum zur Eidgenössischen Technischen Hochschule: Die ersten hundert Jahre 1855–1955 im Ueberblick.” In Eidgenössische Technische Hochschule Zürich. Festschrift zum 125jährigen Bestehen (1955–1980). Zürich: Verlag Neue Zürcher Zeitung, pp. 17–59.
Walter, Scott. 1999. “The non-Euclidean Style of Minkowskian Relativity.” In The Symbolic Universe, ed. Jeremy Gray. Oxford: Oxford University Press.
Warwick, Andrew. 1991/1992. “On the Role of the FitzGerald-Lorentz Contraction Hypothesis in the Development of Joseph Larmor’s Electronic Theory of Matter.” In Archive for History of Exact Sciences 43, pp. 29–91.
Warwick, Andrew. 1992/1993. “Cambridge Mathematics and Cavendish Physics: Cunningham, Campbell and Einstein’s Relativity 1905–1911. Part I: The Uses of Theory.” In Studies in History and Philosophy of Science 23, pp. 625–56; “Part II: Comparing Traditions in Cambridge Physics.” In idem, 24 (1993), pp. 1–25.
Weber, R., and L. Favre. 1897. “Matthäus Hipp, 1813–1893.” In Bulletin de la société des sciences naturelles de Neuchâtel 24, pp. 1–30.
Welch, Kenneth F. 1972. Time Measurement. An Introductory History. Baskerville: Redwood Press Limited Trowbridge Wiltshire.
Whittaker, Edmund. 1953. A History of the Theories of Aether and Electricity. Vol. II: The Modern Theories 1900–1926. New York: Harper & Brothers, reprinted 1987.
Wise, Norton M. 1988. “Mediating Machines.” In Science in Context 2, pp. 77–113.
Wise, Norton M. (ed.). 1995. The Values of Precision. Princeton, NJ: Princeton University Press.
Wise, Norton M., and David C. Brock. 1998. “The Culture of Quantum Chaos.” In Studies in the History and Philosophy of Modern Physics 29, pp. 369–89.
INDEX
Page numbers in italics refer to illustrations.
Abbe, Cleveland
Abraham, Max
absolutes:
of movement
of time
Academy of Sciences
Quito expedition overseen by
Acta Mathematica
action-reaction principle
Adams, John Couch
A. De Peyer and A. Favarger et Cie
AEG (Allgemaine Elektrizitäts Gesellschaft)
Africa, in global mapmaking network
Agostinelli, L.
Air Force, U.S., signal technology of
Airy, George Sir
Alder, Ken
algebra, vs. geometry
Alembert, Jean Le Rond d’
Alfaro, Eloy
Allen, William F.
Allgemaine Elektrizitäts Gesellschaft (AEG)
almanacs:
astronomical
sunrise/sunset times in
Alsace-Lorraine
American Association for the Advancement of Science
American Metrological Society
American Society of Civil Engineers
anarchism
Andes, mapping expedition in
Andrade, Jules
Anschütz-Kaempfe
Anschütz-Kaempfe, Hermann
antimeridian
antipositivism
Aristotle
Arthur, Chester A.
Asia
Asia, in global electromapping network
asteroids, orbital motion of
astronomy:
in clock coordination
date-change times in
/>
in longitude determination
Atlantic Ocean:
longitude mapping of
telegraph cables across
atomism
Aubin, David
Avenarius, Richard
Bain, Alexander
Barkan, Diana Kormos
Barnard, Frederick A. P.
Barrow-Green, June
Barthes, Roland
Bartky, Ian R.n
Becquerel, Edmond
Becquerel, Henri
Bergson, Henri
Berlin, Germany:
master clock of
Paris clock coordination with
Berlin Observatory
Bern, Switzerland:
clock synchronization in
patent office in
train station of
Bertillon, Alphonse
Besso, Michele
Bigg, Charlotte
Birkhoff, George D.
Bloch, Léon
Boer War
Bologna Academy of Science
Boltzmann, Ludwig
Bonaparte, Prince Roland
Bond, W. C.
Bonnefoy, Marcel Paul
Bonnet, Ossian
Bordeaux Observatory
Bossuet, Jacques-Bénigne
Boston, Mass.:
clock-coordination system of
standard time adopted in
Boudenoot law
Bouguer, Pierre
Bourdin, Martial
Boutroux, Aline Poincaré
Boutroux, Emile
“Brain of Einstein” (Barthes)
Brazil, in global telegraph network
Breteuil Observatory
British Cable
Brock, David C.
Broglie, Louis de
Broglie, Maurice de
Bucherer, Alfred
Bureau des Longitudes
Eiffel radio time backed by
global mapping efforts of
on Paris-London longitudinal difference
Polytechnicians at
presidents of
Quito mapping expedition of
on time decimalization
Burnett, Graham D.
Cahan, David
Calinon, Auguste
Canales, Jimena
Canary Islands, prime meridian set in
Carnap, Rudolf
Cassidy, David
Catholic Church
Cauchy, Augustin Louis
celestial mechanics
as chaos vs. stability
three-body problem in
Celestial Mechanics (Laplace)
centimeter-gram-second system (CGS)
Central and South American Cable
chaos
Charlemagne
Chicago, Ill., observatory time signals in
Christie, William
church clocks
circumference, degrees of
Civil War, U.S.
Clarke, Colonel
clock coordination:
American method of
by astronomical observation
as democratic goal
early efforts at
electric distribution of
with light signals
longitude determination linked to
mathematics of electric signals in
multiple strains in modernist move toward
patents connected with
pneumatic systems of
precision of
public protests against
radio transmissions used in
by railroads vs. observatory time signals
satellite-based
in special relativity theory
in Switzerland
technology vs. theoretical basis of
telegraph transmission time considered in
U.S. promotion of
clocks:
astronomical
atomic
on churches
as convenient measurement format
on decimal time system
electric pendula designed for
minute hands on
as recording mechanisms
seagoing
coal mines
Coast and Geodetic Survey, U.S.
Cohn, Emil
Colin, Captain
Columbus, Christopher
compasses, gyroscopic
Comte, Auguste
Congress, U.S.
on prime meridian
river surveys ordered by
Connaissance des Temps
Connecticut, railroads vs. observatory time signals in
Conrad, Joseph
conventionalism
of geometry
pedagogical
in philosophy
in physics
of simultaneity
Convention of the Meter
conventions, international
as diplomatic instruments
prime meridian as
proliferation of
telegraph transmission time reflected in
of weights and measures
Cornu, Alfred
astronomical clock built by
on decimalization
electrosynchronization analyzed by
at Polytechnique
critical opalescence
Critical Study of Mechanics (Calinon)
Cunningham, Ebenezer
curves
Dakar, Senegal, time-synchronized mapping project at
Darrigol, Olivier
Daston, Lorraine
Davy, Humphrey
Davy lamps
day, start of
Dean, George
Dearborn Observatory
Débarbat, Suzanne
de Bernardières, Octave
Decazes, Duc Louis
decimalization
of circumference
of electrical units
of metric system
of time
Dedekind, Julius Wilhelm Richard
de la Grye, Bouquet
de la Noë, General
Delaune, M.
Descartes, René
differential equations
diplomacy, international conventions as instruments of
Disclosure on Universal History (Bossuet)
Dohrn-van Rossum, Gerhard
Doucey, Emile
Dowd, Charles
Dreyfus, Alfred
Drude, Paul
Dudley Observatory
Dumas, Jean Baptiste André
earth:
clock time based on rotation of
satellite surveys of
shape of
Eastern Telegraph Company
eclipses, solar
Ecole des Mines
Ecole Polytechnique
alternative theories presented at
in electric time coordination project
entrance examinations of
ETH vs.
history of
mechanics theory as factory stamp of
theory vs. practical application at
Ecole Professionelle Supérieure des Postes et Télégraphes
Ecuador, French mapping expedition to
Eddington, Arthur
Edison, Thomas
Edson, Franklin
Eidgenössische Technische Hochschule (ETH)
Eiffel, Gustave
Eiffel Tower, radio signals transmitted from
Einstein, Albert:
academic appointments of
antiauthoritarian stance of
childhood of
clocks in milieu of on clock synchronization
education of
electromechanical devices as fascination of
on energy
ether theories rejected by
family business of
on four-dimensional spacetime
on general relativity
on impact of special relativity theory
later career of
light-
signal clock proposed by
on Lorentz
on Mach
magnetic atom theory of
mass/energy equation of
Nazi-era attacks on
on Newton
1905 relativity paper of
observable procedures required by
otherworldy public image of
in patent office
Poincaré’s influence on
Poincaré’s meeting with
political beliefs of
on quantum physics
scientific milieu of
scientific philosophy of
simultaneity addressed by
on solitude
on thermodynamics
as tutor
on velocity of light
writing style of
Einstein, Hermann
Einstein, Jakob
Einstein-de Haas effect
Ekeland, Ivar
electrical industry, standard units of
electricity:
etheric theories on
practical applications of
electrodynamics
empiricism, idealism vs.
energy
conservation of
mass vs.
engineering schools
Enlightenment
entropy
ephemerides
equator
equivalence principle
ETH (Eidgenössische Technische Hochschule)
ether
contraction hypothesis on motion in
Einstein’s rejection of
Euclidean geometry
Euler, Leonhard
Evans, F. J. O.
Faidherbe, Louis
falling bodies, mechanics of
Favarger, Albert
Faye, Hervé
Félix, Victor
Ferdinand, Archduke
Ferrié, Gustave-Auguste
Ferro (island)
fields
Fizeau, Armand-Hippolyte
Fleming, Sandford
Flückiger, Max
Fölsing, Albrecht
Förster, Wilhelm
France:
anarchist actions in
British cable control resented in
coal mines of
colonies of
decimalized time proposed in
diplomacy of
in global electromapping effort
Greenwich prime meridian resisted in
metric system designed in
patent criteria in
political metaphor of time coordination in
radio time systems in
science education in
Franco-Prussian War
Frelinghuyser, Frederick T.
Einstein's Clocks and Poincare's Maps Page 38