Given the magnitude of Europe’s political, social, and spiritual woes, it was perhaps remarkable that anything at all remained of the arts and sciences by the time Adelard left Bath to pursue his advanced education in France, around 1100. Yet a handful of cathedral schools had managed by this time to assemble a course of study based on the so-called seven liberal arts. Borrowed from a late-Roman convention, the seven disciplines were commonly depicted as enticing young maidens. The basic course of grammar, rhetoric, and logic comprised the trivium; its elementary character is reflected today in the word trivial. The more advanced program was the quadrivium of arithmetic, geometry, music, and—Adelard’s personal favorite—astronomy. The entire edifice rested on a shaky and uncertain foundation provided by the Latin encyclopedists, who centuries earlier had collated, synthesized, and simplified classical works of science and philosophy and then presented them for a relatively broad audience.
An unfinished collection by the Roman patrician Boethius, whose execution around 524 on trumped-up charges of treason cut short his lifework, preserved some crumbs of Aristotle’s logical system, several treatises on music, and a few basics of practical geometry. Boethius had planned to translate into Latin all the writings of Plato and Aristotle, but his untimely death condemned this great legacy of natural science, metaphysics, and cosmology to limbo for more than six hundred years. The available teachings of Plato were reduced to one partial Latin translation and an accompanying commentary. This gave medieval Europe its only real glimpse of natural philosophy until the twelfth century.16 Virtually nothing was known of metaphysics or cosmology. Surviving manuscripts of Pliny’s Natural History captured other tidbits of classical works, as did a few other similar books that circulated haphazardly.
By far the most popular Western textbook was an encyclopedia of half-remembered knowledge and often far-fetched explanations of natural phenomena compiled in the seventh century by Isidore, bishop of Seville. In his Etymologies, Isidore laid out in twenty volumes every bit of knowledge he thought worth preserving in the face of what he feared was a rising tide of barbarism threatening his native Spain. This included, among other things, discussions of grammar and rhetoric, arithmetic and astronomy, zoology, agriculture, theology, and military science. The bishop was well read and industrious, but his actual understanding was a bit suspect. He was clearly no critical thinker, for he accepts the material of his various sources without question and—in keeping with the spirit of his times—is more interested in allegorical meaning than in any underlying truth.
Etymologies was a runaway success and a staple in medieval Christian libraries for centuries. Readers generally preferred it to the original sources, which it soon consigned to oblivion; ignored and unwanted, many were lost forever. Printed editions of Isidore’s work appeared well into the Renaissance. His teachings were followed so slavishly that his assertion—based on the author’s elementary mistranslation of classical sources—that the earth was flat and “resembles a wheel” long retained a hold on many in medieval Europe, even if a handful of scholars and learned monks knew otherwise. This popular notion contradicted the classical Greek and Arab conception of the universe—as a series of spheres and wheels moving in a mechanical dance of circular motion, with the earth at its center—and inhibited the West from participating in the huge enterprise of cosmology. It made no difference that the prevailing model, codified by Ptolemy in the second century A.D. and studied ever since, was wrong; the important thing was to take advantage of the enormous opportunity for fruitful scientific research that it nonetheless afforded.
The Venerable Bede, who died in 735 after a long life of study inside the walls of his monastery in northern England, was perhaps the most subtle and sophisticated thinker of this early intellectual cohort. Bede’s The Reckoning of Time was an important early attempt at the Easter computus, the calculation of the hour, and solutions to related problems. From his careful reading of Pliny, he concluded that the earth was a sphere—a teaching hopelessly obscured by Isidore’s far more popular claim to the contrary—and he had some understanding of the varying hours of daylight and the behavior of the tides. Bede’s knowledge was rudimentary, but it was so far ahead of its day that his fame soon resonated across Christendom. Few had seen anything like him before. “God, the Orderer of natures, who raised the Sun from the East on the fourth day of Creation, in the Sixth Age of the world has made Bede rise from the West as a new Sun to illuminate the whole Earth,” gushed Notker the Stammerer, a monk in far-off Switzerland.17
It fell to the French cathedral schools to slowly shape the early building blocks left behind by the encyclopedists and a handful of like-minded monks into a coherent, if still incomplete and deeply flawed, body of knowledge. At the behest of Charlemagne, Alcuin of York had created a basic curriculum for the first of these institutions in the late eighth century to provide Charlemagne’s empire with competent, trained functionaries. Adelard’s alma mater at Tours was the first such school, and it gradually emerged as something of a European intellectual center.18 Other schools were founded at Chartres, Laon, and elsewhere. By Adelard’s day, these cathedral schools had already been in existence for centuries. They attracted some of the best scholars from among the small educated religious class and drew ambitious young students from different parts of Europe. Bishop John himself had come from Tours, and he used his personal and church connections there to secure a coveted place at the school for his protégé. The preference of the teachers at the cathedral schools for the quadrivium, in particular for mathematics and astronomy, had a profound influence on young Adelard’s own outlook and interests.19 These in turn determined the ideas he would later adopt from among the teachings of the Arabs and bring back to the West.
The early epicenter of Europe’s medieval intellectual activity was the former kingdom of Lotharingia. Once the heart of Charlemagne’s empire, it comprised parts of western Germany, Belgium, the Netherlands, and France. Its hub, Liege in present-day Belgium, was known as the “Athens of Lotharingia” for its serious scholarship.20 For decades, the kings of England had relied on a steady supply of Lotharingian clerics to fill high royal and ecclesiastical posts. Bishop John’s predecessor had come from the region, as had Adelard’s father, Fastrad, and a number of other influential figures in eleventh-century English intellectual and religious life. The schools and monasteries of Lotharingia had emerged as the first tentative repositories of Arab science and technology, including the Arabic number system; with no suitable educational institutions of its own, the English crown was forced to rely on well-trained imports to meet a growing demand.21
Among the earliest Western proponents of intellectual innovation, including that invaluable calculating device, the abacus, was Gerbert d’Aurillac, one of the day’s finest minds and the future Pope Sylvester II. Raised as an oblate, or monk-in-training, in the monastery of St. Gerard, the precocious Gerbert soon outgrew the limited learning available in his native France; there was simply no one among the local monks sufficiently versed in mathematics or astronomy to further his education. In 967, his superiors sent him for three years of advanced studies at the monastery of Vich in Catalonia, then a distant Christian frontier outpost abutting the scientific and cultural powerhouse of Muslim Spain.
Catalonia enjoyed good trade relations with the Western Caliphate, based in the imperial city of Cordoba. Muslim traders were a common sight in Catalonian markets, and cultural trends, ideas, and inventions passed easily enough across this border between Muslim East and Christian West. The Arabs’ advanced science of the stars, the game of chess, the earliest representation of what came to be called Arabic numerals, and the Muslim astrolable—the most potent analog computer until the modern era—were all awaiting “discovery” in Catalonia.22 Here, all seven of the liberal arts were available for study.
At a time when even the richest monasteries of France, Germany, and England might own just a few dozen volumes of mostly outdated learning, the Catalonian monks, particularly
those of Santa Maria de Ripoll, enjoyed access to relatively large collections that included Arabic texts and their translations. These hinted at the secrets of ancient learning, as well as more recent Arab science, philosophy, and medicine. Young Gerbert visited the Ripoll monastery and may have brought back knowledge of basic Arab technology, such as the workings of the water clock, to his native France. Nonetheless, even at Ripoll, the standard of learning was woefully weak. The earliest Latin treatises on the astrolabe and related technologies were peppered with errors and half-digested Arabic terminology; the West was unable to produce its own coherent astrolabe texts until the mid-twelfth century.23
Gerbert returned home from Catalonia to take up a series of teaching posts. He immediately championed the very quadrivium—music, arithmetic, geometry, and astronomy—that he had been unable to pursue as a young monk in France. During his stay in Spain, he had acquired the translation of an Arabic book on the stars from the archdeacon of Barcelona and a separate work on mathematics and astronomy. Gerbert taught his students arithmetic by means of an unusual abacus consisting of individually numbered counters, one to nine; the concept of zero remained elusive. Soon, similar Latin abacus systems with the Hindu-Arabic characters—the figures we use today—in place of the prevailing Roman numerals, using crude transliterations from the original Arabic names for each figure, began to take root. The names for the figures were likely borrowed from the informal Arab practice of calculating on a dust board, a form of erasable easel. It would take another 150 years for proper Arabic numerals and the positional system of ones, tens, hundreds, and so on—fundamentally the same system we use today—to become the accepted means of calculation.24
Gerbert and his followers were fascinated by the course of the stars and the planets, and they insisted on the value of firsthand observation of the heavens—work that at the very least prepared the way for the coming of Arab astronomy. In a letter from the French city of Rheims to a fellow cleric around 978, Gerbert makes clear that he has broken free from the flat-earth teachings of Isidore of Seville. “In reply to your query about the sphere for demonstrating the celestial circles and constellations, my brother, it is made completely round, divided equally through the middle by the circumference, which has been divided into sixty parts.”25
Medieval commentators hold that Gerbert was the first to introduce the West to the astrolabe as a way to address the troubling problems of monastic prayer time and the ecclesiastical calendar. This portable instrument could also measure the height of a tower or the depth of a well, determine geographic latitude, mark the direction of true north, and work out the position of the sun and the major stars. The origins of the device itself are obscure, but the design and theoretical approach were almost certainly Greek. Greek mathematicians and astronomers in Alexandria, Egypt, wrote numerous treatises on the basics of the astrolabe. A text by Ptolemy, now lost, detailed the underlying mathematical principles, also vital to mapmaking, but the more advanced planispheric astrolabe used by the Arabs was unknown in his day. Arab tradition, nonetheless, credits the great astronomer with the accidental invention of this powerful tool. Ibn Khallikan, writing in the thirteenth century, recounts one version: Ptolemy was out riding one day, a celestial globe in his hand; he dropped it, and his horse crushed it flat with his hooves, creating the planispheric astrolabe.26
Refined by the Arabs from these early Greek designs, the astrolabe was a virtual bronze book of the stars that projected the spherical universe onto a two-dimensional face. A treatise on the astrolabe, commonly ascribed to Gerbert or a member of his immediate circle, calls the device a great gift from God but also appears to warn against any broader usage: “[The astrolabe can be used] to find the true time of day, whether in summer or wintertime, with no ambiguous uncertainty in the reckoning. Yet this seems most suitable for celebrating the daily office of prayer and to be excessive knowledge for general use. How pleasing and seemly the whole proceeds, when with the greatest reverence at the proper hour under the rule of a just judge, who will not wish the slightest shadow of error, they harmoniously complete the service of the Lord.”27
The astrolabe itself was beautiful to behold—elegant in form and powerful in function. The typical device was about the size of a salad plate, fashioned in polished, decorative bronze. Degrees of latitude, or perhaps the hours of the day, were commonly inscribed along the outer edge. A disk, painstakingly calibrated for the user’s geographic location, sat atop the face of the astrolabe, with a rotating skeinlike cutout displaying the principal stars and the sun’s annual path affixed to that and held in place with a wedge-shaped pin known as the horse. A pivoting pointer—the alidade, from the Arabic al-idada—was mounted on the back to take readings while the astrolabe was held aloft, suspended at arm’s length, by a ring at the top. In the daytime, the rays of the sun were lined up with two pinholes or notches in the alidade; at night, the user followed the same procedure but took aim at a known star. The position of the alidade against the astrolabe’s scaled markings could then yield a wealth of corresponding celestial information. The perfection of the astrolabe reflected the genius of Arab science: it drew on classical sources but then went well beyond them to refine the device and to address the burning questions of the day in such fields as timekeeping, astronomy, astrology, and cartography.
As the early Latin scholars immediately recognized, however, descriptions of the workings and utility of the astrolabe cannot do it justice. In one of the earliest Latin references to the device, Radolphus, a teaching master at Liege, invites a colleague from Cologne to come and handle the astrolabe for himself, rather than rely on any written account or sketch that he might provide. “Otherwise, only to see the astrolabe will be of no more help than drawings for the … blind, or poultices for the gout-ridden,” Radolphus informs his learned friend in a letter.28
Word of the astrolabe and its Arab provenance began to spread slowly throughout the West. Fulbert, a student of Gerbert and later the bishop of Chartres and the founder of its influential cathedral school, composed a short verse to help his pupils recall the Arabic names of eight of the most important stars in the constellations of the Western zodiac. The result is the earliest known use of Arabic words in a Latin text: “Aldeberan stands out in Taurus, Menke and Rigel in Gemini, and Frons and bright Cabalazet in Leo. Scorpio, you have Galbalgrab; and you Capricorn, Deneb. You, Batanalhaut [literally, batan al~hut, fish’s gut], are alone enough for Pisces.”29 These same “stars of the hours” appear in one of the earliest European works on the astrolabe, dating from around 1000. Fulbert also prepared a glossary of Arabic and Latin names for parts of the astrolabe, opening the door to what would soon become a flood of Arabic terminology, concepts, and ideas in Western arts and sciences.30 Today, our constellations and planets bear Latin names, but those of many of the major stars are Arabic in origin.
Gerbert’s influence was particularly strong in Lotharingia, and he kept up a lively correspondence with a number of scholars in the region about the latest mathematical trends and ideas he had picked up in Spain. Loose ties between the local monasteries and those still active in Muslim Spain had already established pathways for the occasional exchange of ideas, and Germany and the Western Caliphate enjoyed periodic contact. A delegation sent to Cordoba in 954, headed by a well-traveled Lotharingian scholar, John of Gorze, is thought to have returned after a three-year stay with original manuscripts and a few early translations of Arabic manuscripts. The Spanish caliph Abd al-Rahman responded by dispatching a Mozarab, or Arabized Christian, as his representative to the Saxon court. From the schools and monasteries of Lotharingia, Arabic learning began to spread gradually into Germany, France, and England.31
Not everyone was so captivated by the arrival of these new ideas, with their seemingly magical powers and their suspicious association with the infidel Arabs. In a society where literacy and general education were rare, this same suspicion was easily directed at any type of nonreligious book learning. This trend would onl
y be aggravated by the coming intellectual invasion from the Muslim world, with its foreign terms, mysterious symbols, and unimaginable innovations. Allegations of black magic were hurled at a number of the early Christian scholars who sought out Arabic learning, a phenomenon that would later see the deadly charge of heresy leveled against those who challenged church teachings in philosophy and the natural sciences.
William of Malmesbury, a monastic librarian and historian who died 140 years after Gerbert d’Aurillac, acknowledged the late pope’s undoubted technical skills but nonetheless remained wary of his time in Spain: “There he learned what the singing and flight of birds portended, there he acquired the art of calling up spirits from hell.”32 William also dismissed Gerbert’s mathematical ideas as “dangerous Saracen magic” and claimed that his election as pontiff, on the cusp of the millennium in 999, was due to a pact with the Devil. Another cleric noted sourly that, like Gerbert before him, the learned bishop of Hereford, Robert, had also wasted his time with such matters: “Mathesis [astrology] did not prolong his life, nor did the abacus which numbers years in a different way.”33 A thirteenth-century tradition calls Gerbert “the best necromancer in France, whom the demons of the air readily obeyed in all that he required of them by day and night, because of the great sacrifices he offered them.” These same demons, it was said, taught him to use the wondrous astrolabe in exchange for his soul.34
The House of Wisdom Page 5