The Descent of Man

Home > Science > The Descent of Man > Page 27
The Descent of Man Page 27

by Charles Darwin


  With reference to the other Orders of insects, I have been able to collect very little reliable information. With the stag-beetle (Lucanus cervus) “the males appear to be much more numerous than the females;” but when, as Cornelius remarked during 1867, an unusual number of these beetles appeared in one part of Germany, the females appeared to exceed the males as six so one. With one of the Elateridæ, the males are said to be much more numerous than the females, and “two or three are often found united with one female;”401 so that here polyandry seems to prevail. 314 With Siagonium (Staphylinidæ), in which the males are furnished with horns, “the females are far more numerous than the opposite sex.” Mr. Janson stated at the Entomological Society that the females of the bark-feeding Tomicus villosus are so common as to be a plague, whilst the males are so rare as to be hardly known. In other Orders, from unknown causes, but apparently in some instances owing to parthenogenesis, the males of certain species have never been discovered or are excessively rare, as with several of the Cynipidæ.402 In all the gall-making Cynipidæ known to Mr. Walsh, the females are four or five times as numerous as the males; and so it is, as he informs me, with the gall-making Cecidomyiiæ (Diptera). With some common species of Saw-flies (Tenthredinæ) Mr. F. Smith has reared hundreds of specimens from larvæ of all sizes, but has never reared a single male: on the other hand Curtis says,403 that with certain species (Athalia), bred by him, the males to the females were as six to one; whilst exactly the reverse occurred with the mature insects of the same species caught in the fields. With the Neuroptera, Mr. Walsh states that in many, but by no means in all, the species of the Odonatous groups (Ephemerina), there is a great overplus of males: in the genus Hetærina, also, the males are generally at least four times as numerous as the females. In certain species in the genus Gomphus the males are equally numerous, whilst in two other species, the females are twice or thrice as numerous as the males. In some European species of Psocus thousands of females may be collected without a single male, whilst with other species of the same genus both sexes are common.404 In England, Mr. MacLachlan has captured hundreds of the female Apatania muliebris, but has never seen the male; and of Boreus hyemalis only four or five males have been here seen.405 With most of these species (excepting, as I have heard, with the Tenthredinæ) there is no reason to suppose that the females are subject to parthenogenesis; and thus we see how ignorant we are on the causes of the apparent discrepancy in the proportional numbers of the two sexes.

  In the other Classes of the Articulata I have been able to collect still less information. With Spiders, Mr. Blackwall, who has carefully attended to this class during many years, writes to me that the males from their more erratic habits are more commonly seen, 315and therefore appear to be the more numerous. This is actually the case with a few species; but he mentions several species in six genera, in which the females appear to be much more numerous than the males.406 The small size of the males in comparison with the females, which is sometimes carried to an extreme degree, and their widely different appearance, may account in some instances for their rarity in collections.407

  Some of the lower Crustaceans are able to propagate their kind asexually, and this will account for the extreme rarity of the males. With some other forms (as with Tanais and Cypris) there is reason to believe, as Fritz Müller informs me, that the male is much shorter-lived than the female, which, supposing the two sexes to be at first equal in number, would explain the scarcity of the males. On the other hand this same naturalist has invariably taken, on the shores of Brazil, far more males than females of the Diastylidæ and of Cypridina; thus with a species in the latter genus, 63 specimens caught the same day, included 57 males; but he suggests that this preponderance may be due to some unknown difference in the habits of the two sexes. With one of the higher Brazilian crabs, namely a Gelasimus, Fritz Müller found the males to be more numerous than the females. The reverse seems to be the case, according to the large experience of Mr. C. Spence Bate, with six common British crabs, the names of which he has given me.

  On the Power of Natural Selection to regulate the proportional Numbers of the Sexes, and General Fertility.—In some peculiar cases, an excess in the number of one sex over the other might be a great advantage to a species, as with the sterile females of social insects, or with those animals in which more than one male is requisite to fertilise the female, as with certain cirripedes and perhaps certain fishes. An inequality between the sexes in these cases might have been acquired through natural selection, but from their rarity they need not here be further considered. In all ordinary 316cases an inequality would be no advantage or disadvantage to certain individuals more than to others; and therefore it could hardly have resulted from natural selection. We must attribute the inequality to the direct action of those unknown conditions, which with mankind lead to the males being born in a somewhat larger excess in certain countries than in others, or which cause the proportion between the sexes to differ slightly in legitimate and illegitimate births.

  Let us now take the case of a species producing from the unknown causes just alluded to, an excess of one sex—we will say of males—these being superfluous and useless, or nearly useless. Could the sexes be equalised through natural selection? We may feel sure, from all characters being variable, that certain pairs would produce a somewhat less excess of males over females than other pairs. The former, supposing the actual number of the offspring to remain constant, would necessarily produce more females, and would therefore be more productive. On the doctrine of chances a greater number of the offspring of the more productive pairs would survive; and these would inherit a tendency to procreate fewer males and more females. Thus a tendency towards the equalisation of the sexes would be brought about. But our supposed species would by this process be rendered, as just remarked, more productive; and this would in many cases be far from an advantage; for whenever the limit to the numbers which exist, depends, not on destruction by enemies, but on the amount of food, increased fertility will lead to severer competition and to most of the survivors being badly fed. In this case, if the sexes were equalised by an increase in the number of the females, a simultaneous decrease in the total number of the offspring would be beneficial, or even necessary, for the existence of the species; and317 this, I believe, could be effected through natural selection in the manner hereafter to be described. The same train of reasoning is applicable in the above, as well as in the following case, if we assume that females instead of males are produced in excess, for such females from not uniting with males would be superfluous and useless. So it would be with polygamous species, if we assume the excess of females to be inordinately great.

  An excess of either sex, we will again say of the males, could, however, apparently be eliminated through natural selection in another and indirect manner, namely by an actual diminution of the males, without any increase of the females, and consequently without any increase in the productiveness of the species. From the variability of all characters, we may feel assured that some pairs, inhabiting any locality, would produce a rather smaller excess of superfluous males, but an equal number of productive females. When the offspring from the more and the less male-productive parents were all mingled together, none would have any direct advantage over the others; but those that produced few superfluous males would have one great indirect advantage, namely that their ova or embryos would probably be larger and finer, or their young better nurtured in the womb and afterwards. We see this principle illustrated with plants; as those which bear a vast number of seed produce small ones; whilst those which bear comparatively few seeds, often produce large ones well-stocked with nutriment for the use of the seedlings.408 Hence the offspring of the parents which 318had wasted least force in producing superfluous males would be the most likely to survive, and would inherit the same tendency not to produce superfluous males, whilst retaining their full fertility in the production of females. So it would be with the converse case of the female sex. Any slight excess
, however, of either sex could hardly be checked in so indirect a manner. Nor indeed has a considerable inequality between the sexes been always prevented, as we have seen in some of the cases given in the previous discussion. In these cases the unknown causes which determine the sex of the embryo, and which under certain conditions lead to the production of one sex in excess over the other, have not been mastered by the survival of those varieties which were subjected to the least waste of organised matter and force by the production of superfluous individuals of either sex. Nevertheless we may conclude that natural selection will always tend, though sometimes inefficiently, to equalise the relative numbers of the two sexes.

  Having said this much on the equalisation of the sexes, it may be well to add a few remarks on the regulation through natural selection of the ordinary fertility of species. Mr. Herbert Spencer has shewn in an able discussion409 that with all organisms a ratio exists between what he calls individuation and genesis; whence it follows that beings which consume much matter or force in their growth, complicated structure or activity, or which produce ova and embryos of large size, or which expend much energy in nurturing their young, cannot be so productive as beings of an opposite nature. Mr. Spencer further shews that minor differences in fertility will be regulated through natural selection. Thus 319the fertility of each species will tend to increase, from the more fertile pairs producing a larger number of offspring, and these from their mere number will have the best chance of surviving, and will transmit their tendency to greater fertility. The only check to a continued augmentation of fertility in each organism seems to be either the expenditure of more power and the greater risks run by the parents that produce a more numerous progeny, or the contingency of very numerous eggs and young being produced of smaller size, or less vigorous, or subsequently not so well nurtured. To strike a balance in any case between the disadvantages which follow from the production of a numerous progeny, and the advantages (such as the escape of at least some individuals from various dangers) is quite beyond our power of judgment.

  When an organism has once been rendered extremely fertile, how its fertility can be reduced through natural selection is not so clear as how this capacity was first acquired. Yet it is obvious that if individuals of a species, from a decrease of their natural enemies, were habitually reared in larger numbers than could be supported, all the members would suffer. Nevertheless the offspring from the less fertile parents would have no direct advantage over the offspring from the more fertile parents, when all were mingled together in the same district. All the individuals would mutually tend to starve each other. The offspring indeed of the less fertile parents would lie under one great disadvantage, for from the simple fact of being produced in smaller numbers, they would be the most liable to extermination. Indirectly, however, they would partake of one great advantage; for under the supposed condition of severe competition, when all were pressed for food, it is extremely probable that those individuals which from320 some variation in their constitution produced fewer eggs or young, would produce them of greater size or vigour; and the adults reared from such eggs or young would manifestly have the best chance of surviving, and would inherit a tendency towards lessened fertility. The parents, moreover, which had to nourish or provide for fewer offspring would themselves be exposed to a less severe strain in the struggle for existence, and would have a better chance of surviving. By these steps, and by no others as far as I can see, natural selection under the above conditions of severe competition for food, would lead to the formation of a new race less fertile, but better adapted for survival, than the parent-race.

  * * *

  321

  CHAPTER IX.

  Secondary Sexual Characters in the Lower Classes of the Animal Kingdom.

  These characters absent in the lowest classes—Brilliant colours—Mollusca—Annelids—Crustacea, secondary sexual characters strongly developed; dimorphism; colour; characters not acquired before maturity—Spiders, sexual colours of; stridulation by the males—Myriapoda.

  In the lowest classes the two sexes are not rarely united in the same individual, and therefore secondary sexual characters cannot be developed. In many cases in which the two sexes are separate, both are permanently attached to some support, and the one cannot search or struggle for the other. Moreover it is almost certain that these animals have too imperfect senses and much too low mental powers to feel mutual rivalry, or to appreciate each other’s beauty or other attractions.

  Hence in these classes, such as the Protozoa, Cœlenterata, Echinodermata, Scolecida, true secondary sexual characters do not occur; and this fact agrees with the belief that such characters in the higher classes have been acquired through sexual selection, which depends on the will, desires, and choice of either sex. Nevertheless some few apparent exceptions occur; thus, as I hear from Dr. Baird, the males of certain Entozoa, or internal parasitic worms, differ slightly in colour from the females; but we have no reason to suppose that such differences have been augmented through sexual selection.

  322Many of the lower animals, whether hermaphrodites or with the sexes separate, are ornamented with the most brilliant tints, or are shaded and striped in an elegant manner. This is the case with many corals and sea-anemonies (Actineæ), with some jelly-fish (Medusæ, Porpita, &c.), with some Planariæ, Ascidians, numerous Star-fishes, Echini, &c.; but we may conclude from the reasons already indicated, namely the union of the two sexes in some of these animals, the permanently affixed condition of others, and the low mental powers of all, that such colours do not serve as a sexual attraction, and have not been acquired through sexual selection. With the higher animals the case is very different; for with them when one sex is much more brilliantly or conspicuously coloured than the other, and there is no difference in the habits of the two sexes which will account for this difference, we have reason to believe in the influence of sexual selection; and this belief is strongly confirmed when the more ornamented individuals, which are almost always the males, display their attractions before the other sex. We may also extend this conclusion to both sexes, when coloured alike, if their colours are plainly analogous to those of one sex alone in certain other species of the same group.

  How, then, are we to account for the beautiful or even gorgeous colours of many animals in the lowest classes? It appears very doubtful whether such colours usually serve as a protection; but we are extremely liable to err in regard to characters of all kinds in relation to protection, as will be admitted by every one who has read Mr. Wallace’s excellent essay on this subject. It would not, for instance, at first occur to any one that the perfect transparency of the Medusæ, or jelly-fishes, was of the highest service to them as a323 protection; but when we are reminded by Häckel that not only the medusæ but many floating mollusca, crustaceans, and even small oceanic fishes partake of this same glass-like structure, we can hardly doubt that they thus escape the notice of pelagic birds and other enemies.

  Notwithstanding our ignorance how far colour in many cases serves as a protection, the most probable view in regard to the splendid tints of many of the lowest animals seems to be that their colours are the direct result either of the chemical nature or the minute structure of their tissues, independently of any benefit thus derived. Hardly any colour is finer than that of arterial blood; but there is no reason to suppose that the colour of the blood is in itself any advantage; and though it adds to the beauty of the maiden’s cheek, no one will pretend that it has been acquired for this purpose. So again with many animals, especially the lower ones, the bile is richly coloured; thus the extreme beauty of the Eolidæ (naked sea-slugs) is chiefly due, as I am informed by Mr. Hancock, to the biliary glands seen through the translucent integuments; this beauty being probably of no service to these animals. The tints of the decaying leaves in an American forest are described by every one as gorgeous; yet no one supposes that these tints are of the least advantage to the trees. Bearing in mind how many substances closely analogous to natural organic co
mpounds have been recently formed by chemists, and which exhibit the most splendid colours, it would have been a strange fact if substances similarly coloured had not often originated, independently of any useful end being thus gained, in the complex laboratory of living organisms.

  324The sub-kingdom of the Mollusca.—Throughout this great division (taken in its largest acceptation) of the animal kingdom, secondary sexual characters, such as we are here considering, never, as far as I can discover, occur. Nor could they be expected in the three lowest classes, namely in the Ascidians, Polyzoa, and Brachiopods (constituting the Molluscoida of Huxley), for most of these animals are permanently affixed to a support or have their sexes united in the same individual. In the Lamellibranchiata, or bivalve shells, hermaphroditism is not rare. In the next higher class of the Gasteropoda, or marine univalve shells, the sexes are either united or separate. But in this latter case the males never possess special organs for finding, securing, or charming the females, or for fighting with other males. The sole external difference between the sexes consists, as I am informed by Mr. Gwyn Jeffreys, in the shell sometimes differing a little in form; for instance, the shell of the male periwinkle (Littorina littorea) is narrower and has a more elongated spire than that of the female. But differences of this nature, it may be presumed, are directly connected with the act of reproduction or with the development of the ova.

  The Gasteropoda, though capable of locomotion and furnished with imperfect eyes, do not appear to be endowed with sufficient mental powers for the members of the same sex to struggle together in rivalry, and thus to acquire secondary sexual characters. Nevertheless with the pulmoniferous gasteropods, or land-shells, the pairing is preceded by courtship; for these animals, though hermaphrodites, are compelled by their structure to pair together. Agassiz remarks,410 “Quiconque a eu l’occasion d’observer les amours des lima325çons, ne saurait mettre en doute la séduction déployée dans les mouvements et les allures qui préparent et accomplissent le double embrassement de ces hermaphrodites.” These animals appear also susceptible of some degree of permanent attachment: an accurate observer, Mr. Lonsdale, informs me that he placed a pair of land-shells (Helix pomatia), one of which was weakly, into a small and ill-provided garden. After a short time the strong and healthy individual disappeared, and was traced by its track of slime over a wall into an adjoining well-stocked garden. Mr. Lonsdale concluded that it had deserted its sickly mate; but after an absence of twenty-four hours it returned, and apparently communicated the result of its successful exploration, for both then started along the same track and disappeared over the wall.

 

‹ Prev