by Alex Boese
Sleep Learning
“My fingernails taste terribly bitter. My fingernails taste terribly bitter.” A disembodied voice repeats the phrase over and over. A boy opens his eyes and lies very still in the darkness, listening to the words. He looks to his left and right. None of his camp mates seem to hear what he’s hearing. They are all asleep in their cots. “My fingernails taste terribly bitter,” the voice says again. The boy wonders if the voice is coming from inside his head. Is he going mad?
The boy was not going mad. Unbeknownst to him, he was a participant in a sleep-learning experiment devised by Professor Lawrence LeShan of William and Mary College.
In 1942 LeShan played a phonograph recording of the phrase “My fingernails taste terribly bitter” in a room where twenty young boys were sleeping at an Upstate New York summer camp. He played it in the middle of the night, after he felt sure none of them were awake. Competing with the chirping of crickets, the phrase repeated in the darkness 300 times a night, fifty-four nights in a row. The boys heard it in their sleep 16,200 times before the summer was over.
LeShan wanted to find out whether verbal suggestions given during sleep could influence waking behavior. All the boys bit their nails. So would repeated nocturnal exposure to a negative suggestion about nail biting cause them to abandon this nervous habit?
One month into the experiment, a nurse surreptitiously checked their nails during a routine medical examination. One boy seemed to have kicked the habit. LeShan boasted that skin of a healthy texture had replaced the “coarse wrinkled skin of the habitual biter.”
But a week later, disaster struck. The phonograph broke. Eager not to abandon the experiment, LeShan improvised by delivering the suggestion himself, three hundred times a night. If any of the boys had wondered before what was going on, they now would have been completely bewildered as they woke to the sight of a grown man standing in the darkness insisting that his fingernails tasted terribly bitter.
Surprisingly, direct delivery of the suggestion had a greater effect. Within two weeks, seven more boys had healthy-looking nails. By contrast, a control group of twenty boys not exposed to the suggestion continued to bite away.
Why the sudden success at the end of the experiment? LeShan speculated that it was because his voice was clearer than the phonograph. Another theory would be that his midnight confessions thoroughly spooked the children. If I stop biting my nails, they probably thought, the strange man will go away.
LeShan achieved a 40 percent success rate. Does this mean sleep learning works? For a long time, many researchers were inclined to believe so—especially since a string of other studies seemed to confirm the theory. For instance, during World War I a U.S. naval researcher reported success teaching sixteen cadets Morse code as they slept, though he never published his results. A 1947 study at the University of North Carolina found a group of students could learn a list of words faster if aided by a sleep-learning machine. A 1952 George Washington University study reported sleep instruction accelerated memorization of a list of Chinese words. There was also a widely repeated anecdotal account, disseminated by a tape-recorder salesman, of a housewife surreptitiously using the technique to train her husband to like salad.
By the late 1940s public interest in sleep learning was at an all-time high—fueled by spectacles such as a public demonstration of sleep learning, sponsored by a company selling learn-a-foreign-language phonograph records, in a storefront on Connecticut Avenue in Washington, D.C. Curious pedestrians stopped to watch as 1949’s Miss Washington, Mary Jane Hayes, wearing a strapless bathing suit, climbed into a bed and pretended to doze as a machine whispered French phrases in her ear. “Bon soir . . . Good night . . . Bon . . . good . . . le soir . . . the night.” One reporter covering the event joked, “Frankly, I’d rather spend my nights thinking about Miss Washington than about a French noun.” Ms. Hayes, after changing her first name to Allison, later became a prominent figure in the dreams and fantasies of many young men when she played the title character in Attack of the 50-ft Woman.
An inventor named Max Sherover announced plans to market a commercial sleep-learning machine, which he called the Cerebrograph. It was a combination record player, clock, and pillow microphone. He secured testimonials from celebrities such as opera star Ramón Vinay, who claimed the device helped him memorize his lines. However, the gadget never caught on with the public, even when Sherover relaunched it with a new name—the Dormiphone.
In 1956 the scientific tide began to turn against sleep learning when William Emmons and Charles Simon published the results of a carefully controlled study conducted at Santa Monica College. The two researchers used an electroencephalograph (an instrument that measures brain activity) to make sure their subjects were fully asleep—a precaution previous researchers had never taken—before reading them a list of nouns. Under these conditions, the sleep-learning effect disappeared.
Since that time, scientific interest in sleep learning has gone through ups and downs—though mostly downs. Much of the current research into the subject is conducted by high school students for science fairs. However, some informal studies carried out by Bill Steed of Emeryville, California, during the 1970s are worth mentioning. Steed chose frogs as his subjects, and motivational messages such as “Think positively” and “Don’t let your past destroy your future” as their sleep lessons. (They must have been English-speaking frogs.) These same frogs went on to become regular champions at the Calaveras County frog-jumping competition (made famous by Mark Twain). So maybe there is something to the theory of sleep learning. After all, it’s hard to argue with a high-jumping frog.
LeShan, L. (1942). “The Breaking of a Habit by Suggestion during Sleep.” Journal of Abnormal and Social Psychology 37: 406–8.
Eleven Days Awake
On the first day, Randy Gardner woke at six a.m. feeling alert and ready to go. By day two he had begun to drag, experiencing a fuzzy-headed lack of focus. When handed a series of objects, he struggled to recognize them by touch alone. The third day he became uncharacteristically moody, snapping at his friends. He had trouble repeating common tongue twisters such as Peter Piper picked a peck of pickled peppers. By the fourth day, the sand-clawed demons of sleep were scraping at the backs of his eyeballs. He suddenly and inexplicably hallucinated that he was Paul Lowe, a large black football player for the San Diego Chargers. Gardner, in reality, was white, seventeen years old, and 130 pounds soaking wet.
Gardner, a San Diego high school student, was the subject of a self-imposed sleep-deprivation experiment. He had resolved to find out what would happen to his mind and body if he stayed awake from December 28, 1963, to January 8, 1964, a total of 264 hours—eleven days. Assisting him were two classmates, Bruce McAllister and Joe Marciano Jr. They kept him awake and tracked his condition by administering a series of tests. They planned to enter the results in the Greater San Diego High School Science Fair. But transforming the ordeal from a science fair stunt into one of the most widely cited sleep-deprivation experiments ever conducted was the arrival of Stanford researcher William C. Dement, who flew down from Palo Alto to be with Randy as soon as he heard what was going on.
No one knew what Randy might experience as more days passed, or whether he might cause himself permanent brain damage, because only a handful of sleep-deprivation trials had ever been conducted. One of the earliest studies in this field had come to an inauspicious conclusion. In 1894 Russian physician Marie de Manaceine kept four puppies awake almost five days, at which point the puppies died. She reported that the research was “excessively painful,” not only for the puppies but for herself as well. Apparently monitoring sleepy puppies 24/7 is hard work.
However, the few studies conducted on humans offered more hope. In 1896 doctors J. Allen Gilbert and George Patrick kept an assistant professor and two instructors awake in their lab at the University of Iowa for ninety hours. After the second night, the assistant professor hallucinated that “the floor was covered with a greasy-lookin
g, molecular layer of rapidly moving or oscillating particles.” But no long-term side effects were observed. Then, in 1959, two disc jockeys separately staged wake-a-thons to raise money for medical research. Peter Tripp of New York stayed awake for 201 hours while broadcasting from a glass booth in Times Square. Tom Rounds of Honolulu upped the ante by remaining awake 260 hours. Both Tripp and Rounds suffered hallucinations and episodes of paranoia, but after a few good nights’ sleep they seemed fully recovered. It was Rounds’s record Gardner hoped to beat, which is why he set his goal at 264 hours.
Meanwhile, Gardner valiantly pressed onward, struggling to stay awake. Nights were the hardest. If he lay down for a second, he was out like a light. So his high school friends and Dr. Dement kept him active by cruising in the car, taking trips down to the donut shop, blasting music, and playing marathon games of basketball and pinball. Whenever Gardner went to the bathroom, they made him talk through the door to confirm he wasn’t dozing off. The one thing they didn’t do was give him any drugs. Not even caffeine.
As more days passed, Gardner’s speech began to slur, he had trouble focusing his eyes, he frequently grew dizzy, he had trouble remembering what he said from one minute to the next, and he was plagued by more hallucinations. One time he saw a wall dissolve in front of him and become a vision of a forest path.
To make sure he wasn’t causing himself brain damage or otherwise injuring his health, his parents insisted he get regular checkups at the naval hospital in Balboa Park—the family’s health-care provider since his father served in the military. The doctors at the hospital found nothing physically wrong with him, though he did sporadically appear confused and disoriented.
Finally, at two a.m. on January 8, Gardner broke Rounds’s record. A small crowd of doctors, parents, and classmates gathered to celebrate the event. They cheered wildly, and Gardner, busy taking calls from newsmen, responded with a V-for-victory sign. Four hours later, he was whisked away to the naval hospital where, after receiving a brief neurological checkup, he fell into a deep sleep. He woke fourteen hours and forty minutes later, feeling alert and refreshed.
Gardner’s world record didn’t last long. A mere two weeks later, papers reported that Jim Thomas, a student at Fresno State College, managed to stay awake 266.5 hours. The Guinness Book of Records subsequently recorded that in April 1977 Maureen Weston, of Peterborough, Cambridgeshire, went 449 hours without sleep while participating in a rocking chair marathon. However, Gardner’s feat remains the most well-remembered sleep-deprivation trial. To this day, no one knows the maximum amount of time a human can stay awake.
Gardner suffered no long-term ill effects from his experience. When interviewed as an older man in his sixties, he insisted he really wasn’t the type to pull all-nighters, despite sleep deprivation being the source of his fifteen minutes of fame, and said he had maintained a sensible sleep schedule since his youthful stunt. He did admit to lying awake some nights, but he attributed this to age, not a desire to beat his old record.
Ross, J. (1965). “Neurological Findings After Prolonged Sleep Deprivation.” Archives of Neurology 12: 399–403.
Shaken, Not Stirred
It’s three in the morning and you’re trying to get to sleep. But you’re not having much luck because you’re stuck in a cramped seat on an airplane cruising at thirty thousand feet. Turbulence keeps shaking you. Lights in the cabin flash on and off. People wander up and down the aisle. Somewhere a baby is screaming. How in the world, you wonder, are you supposed to get any rest?
If, in the future, you find yourself in this situation, you might want to reflect on an experiment conducted in 1960 by Ian Oswald, a professor at Edinburgh University. In his lab, he asked subjects to try to fall asleep while being exposed to far more intrusive stimuli than you would experience on a typical plane ride—even given the ever-worsening conditions of economy class. The title of his study hints at the bizarre setting he placed his volunteers in: “Falling asleep open-eyed during intense rhythmic stimulation.”
Three young men in their early twenties served as Oswald’s guinea pigs. Testing them one at a time, he asked each of the subjects to lie down on a couch. He carefully attached one end of a piece of tape to each eyelid and the other end to the subject’s forehead, keeping his eyes pried open. Steam from a boiling kettle in the room prevented the test subject’s eyes from drying out. Next, Oswald placed electrodes on the subject’s left leg. The electrodes produced a painful shock that caused the foot to bend sharply inward involuntarily. Oswald programmed the shocks to occur in a regular, rhythmic pattern. He also positioned a bank of bright flashing lights two feet in front of the man’s face. With his eyes taped open, he couldn’t avoid looking at these lights. Finally, Oswald turned on some blues music. The music, he noted laconically, “was always very loud.”
Having placed each of his three subjects in this unfortunate situation—music blaring, eyes pried open and staring at flashing lights, foot jerking rhythmically from electric shocks—Oswald sat in a corner of the room and waited for them to do something that would seem unlikely in such a circumstance: fall asleep.
One subject was sleep deprived going into the test, having only had one hour of sleep the night before. The other two subjects were fully refreshed and awake. However, it turned out not to make any difference. Within eight to twelve minutes, all three men were asleep. At least, they showed all the signs of being asleep. Their heartbeat slowed, their pupils constricted, and their brain waves, measured by an EEG, displayed a low-voltage slow-wave pattern characteristic of sleep. In addition, the subjects reported afterward feeling as though they had fallen asleep.
Acknowledging possible skepticism of the claim that his subjects fell asleep, Oswald phrased his words carefully:
It seems reasonable to believe that each of these volunteer subjects did go to sleep, but it will be remembered that there is no clear dividing line between wakefulness and sleep, and it is no part of my present concern to insist that subjects crossed any such dividing line, only to claim that there was a considerable fall of cerebral vigilance, and a large decline in the presumptive ascending facilitation from the brain-stem reticular formation to the cerebral cortex.
If your boss ever catches you napping at your desk, Oswald’s wording could offer a convenient excuse: “No, I wasn’t sleeping. I was merely experiencing a large decline in the presumptive ascending facilitation from the brain-stem reticular formation to the cerebral cortex.”
Oswald performed a second test, in which he seated two new subjects each in a chair. Again, he taped their eyes open, played loud blues music, and flashed lights in their eyes. But instead of shocking their legs, he asked them to bang their elbows up and down and tap both feet in time with the music. Required to keep moving, these subjects did not drift into an extended period of sleep as the men in the first study had. However, Oswald did observe them repeatedly drifting off into spells of sleep that lasted from three to twenty seconds. During these microsleeps, their brain waves slowed and they stopped moving their limbs. Then they would come to with a start and begin moving again.
In one of his subjects, Oswald observed fifty-two of these pauses within twenty-five minutes. However, the pauses apparently happened without the subject’s awareness, because the young man later emphatically maintained he had only paused once.
Oswald’s results seem hard to believe. How could someone fall asleep under such conditions? Oswald explained it as a peculiar response of the brain to extremely monotonous sensory stimulation. Instead of becoming aroused by the stimulation, the brain becomes habituated to it and shuts down. He likened it to the trance effect tribal dancing induces. You may have experienced the effect yourself if you’ve driven down a highway for an extended period. It may be the middle of the day and you may have the radio blasting, but the road just keeps rolling along, and your mind wanders off. Moments later you come to with a start, aware that you have zoned out. You may not think you were actually asleep, but from a practical point o
f view there isn’t much difference. As Oswald would put it, the presumptive ascending facilitation from your brain-stem reticular formation to your cerebral cortex was momentarily in decline.
So, to return to the airplane scenario, it’s not the noise and lights, per se, that prevent you from falling asleep. It’s the fact that they’re not monotonously rhythmic. Airlines could remedy this situation by installing vibrating seats, pulsing lights, and continuously looping baby screams. Passengers would soon be drifting off into dreamland, whether they wanted to or not. Electric shocks would, of course, be reserved for business class.
Oswald, I. (May 14, 1960). “Falling Asleep Open-Eyed During Intense Rhythmic Stimulation.” British Medical Journal 1: 1450–55.
Let Sleeping Cats Hunt
The cat freezes in place. It has seen its prey. Slowly it moves forward, sliding its forelimbs across the floor. It freezes again. And then—pounces. A vase crashes to the floor. A light switches on. “What was that? What’s going on?” a voice cries out. “Oh, it’s nothing,” another voice says. “It’s just the cat sleepwalking again.”
Do cats sleepwalk? Veterinarians report that children often ask them this question, and it does seem like a natural topic to be curious about. After all, humans sleepwalk. Why shouldn’t cats? The simple answer is, no, cats do not sleepwalk. However, occasionally, under certain circumstances, they can do something like it.
In 1965 a French neurophysiology researcher named Michel Jouvet was trying to pinpoint the parts of the brain responsible for inducing sleep. His investigative procedure consisted of damaging different parts of cats’ brains and noting what effect this had on the cats’ sleep. He had already learned that when he damaged a cluster of cells called the nuclei of the raphe, located in the brain stem, cats would barely sleep at all. They became insomniacs, shuffling around, unable to settle into their customary catnaps. This led to his conclusion that the nuclei of the raphe, which secrete the chemical serotonin, tell the brain to go to sleep.