Packing for Mars: The Curious Science of Life in the Void

Home > Nonfiction > Packing for Mars: The Curious Science of Life in the Void > Page 1
Packing for Mars: The Curious Science of Life in the Void Page 1

by Mary Roach




  PACKING FOR MARS

  ALSO BY MARY ROACH

  Stiff: The Curious Lives

  of Human Cadavers

  Spook: Science

  Tackles the Afterlife

  Bonk: The Curious Coupling of Science and Sex

  PACKING FOR MARS

  THE CURIOUS SCIENCE OF LIFE IN THE VOID

  MARY ROACH

  W. W. NORTON & COMPANY NEW YORK LONDON

  Copyright © 2010 by Mary Roach

  All rights reserved

  Photograph credits: Frontmatter: © Hamilton Sundstrand Corporation 2010.

  All rights reserved; Chapter 1: Image by Deirdre O’Dwyer; Chapter 2: Dmitri Kessel / Time & Life Pictures / Getty Images; Chapter 3: Courtesy of NASA; Chapter 4: CBS Photo Archive / Hulton Archive / Getty Images; Chapter 5: Courtesy of NASA; Chapter 6: Image Source / Getty Images; Chapter 7: Courtesy of NASA; Chapter 8: Bettman/Corbis; Chapter 9: Ryan McVay / Riser / Getty Images; Chapter 10: Courtesy of NASA; Chapter 11: Hulton Archive / Getty Images; Chapter 12: Joanna McCarthy / Riser / Getty Images; Chapter 13: Hulton Archive / Getty Images; Chapter 14: Courtesy of NASA; Chapter 15: Courtesy of NASA; Chapter 16: Tim Flach / Stone+ / Getty Images

  For information about permission to reproduce selections from this book, write to Permissions, W. W. Norton & Company, Inc., 500 Fifth Avenue, New York, NY 10110

  Library of Congress Cataloging-in-Publication Data

  Roach, Mary.

  Packing for Mars: the curious science of life in the void / Mary Roach.—1st ed.

  p. cm.

  Includes bibliographical references.

  ISBN: 978-0-393-07910-4

  1. Space biology—Popular works. I. Title.

  QH327.R63 2010

  571.0919—dc22

  2010017113

  W. W. Norton & Company, Inc.

  500 Fifth Avenue, New York, N.Y. 10110

  www.wwnorton.com

  W. W. Norton & Company Ltd.

  Castle House, 75/76 Wells Street, London W1T 3QT

  For Jay Mandel and Jill Bialosky,

  with cosmic gratitude

  CONTENTS

  Countdown

  1 HE’S SMART BUT HIS BIRDS ARE SLOPPY

  Japan Picks an Astronaut

  2 LIFE IN A BOX

  The Perilous Psychology of Isolation and Confinement

  3 STAR CRAZY

  Can Space Blow Your Mind?

  4 YOU GO FIRST

  The Alarming Prospect of Life Without Gravity

  5 UNSTOWED

  Escaping Gravity on Board NASA’s C-9

  6 THROWING UP AND DOWN

  The Astronaut’s Secret Misery

  7 THE CADAVER IN THE SPACE CAPSULE

  NASA Visits the Crash Test Lab

  8 ONE FURRY STEP FOR MANKIND

  The Strange Careers of Ham and Enos

  9 NEXT GAS: 200,000 MILES

  Planning a Moon Expedition Is Tough, but Not as Tough as Planning a Simulated One

  10 HOUSTON, WE HAVE A FUNGUS

  Space Hygiene and the Men Who Stopped Bathing for Science

  11 THE HORIZONTAL STUFF

  What If You Never Got Out of Bed?

  12 THE THREE-DOLPHIN CLUB

  Mating Without Gravity

  13 WITHERING HEIGHTS

  Bailing Out from Space

  14 SEPARATION ANXIETY

  The Continuing Saga of Zero-Gravity Elimination

  15 DISCOMFORT FOOD

  When Veterinarians Make Dinner, and Other Tales of Woe from Aerospace Test Kitchens

  16 EATING YOUR PANTS

  Is Mars Worth It?

  Acknowledgments

  Time Line

  Bibliography

  PACKING FOR MARS

  COUNTDOWN

  To the rocket scientist, you are a problem. You are the most irritating piece of machinery he or she will ever have to deal with. You and your fluctuating metabolism, your puny memory, your frame that comes in a million different configurations. You are unpredictable. You’re inconstant. You take weeks to fix. The engineer must worry about the water and oxygen and food you’ll need in space, about how much extra fuel it will take to launch your shrimp cocktail and irradiated beef tacos. A solar cell or a thruster nozzle is stable and undemanding. It does not excrete or panic or fall in love with the mission commander. It has no ego. Its structural elements don’t start to break down without gravity, and it works just fine without sleep.

  To me, you are the best thing to happen to rocket science. The human being is the machine that makes the whole endeavor so endlessly intriguing. To take an organism whose every feature has evolved to keep it alive and thriving in a world with oxygen, gravity, and water, to suspend that organism in the wasteland of space for a month or a year, is a preposterous but captivating undertaking. Everything one takes for granted on Earth must be rethought, relearned, rehearsed—full-grown men and women toilet-trained, a chimpanzee dressed in a flight suit and launched into orbit. An entire odd universe of mock outer space has grown up here on Earth. Capsules that never blast off; hospital wards where healthy people spend months on their backs, masquerading zero gravity; crash labs where cadavers drop to Earth in simulated splash-downs.

  A couple years back, a friend at NASA had been working on something over in Building 9 at the Johnson Space Center. This is the building with the mock-ups, some fifty in all—modules, airlocks, hatches, capsules. For days, Rene had been hearing an intermittent, squeaking racket. Finally, he went to investigate. “Some poor guy in a spacesuit running on a treadmill suspended from a big complicated gizmo to simulate Martian gravity. Lots of clipboards and timers and radio headsets and concerned looks all around.” It occurred to me, reading his email, that it’s possible, in a way, to visit space without leaving Earth. Or anyway, a sort of slapstick-surreal make-believe edition. Which is more or less where I’ve been these past two years.

  OF THE MILLIONS of pages of documents and reports generated by the first moon landing, none is more telling, to me anyway, than an eleven-page paper presented at the twenty-sixth annual meeting of the North American Vexillological Association. Vexillology is the study of flags, not the study of vexing things, but in this case, either would fit. The paper is entitled “Where No Flag Has Gone Before: Political and Technical Aspects of Placing a Flag on the Moon.”

  It began with meetings, five months before the Apollo 11 launch. The newly formed Committee on Symbolic Activities for the First Lunar Landing gathered to debate the appropriateness of planting a flag on the moon. The Outer Space Treaty, of which the United States is a signer, prohibits claims of sovereignty upon celestial bodies. Was it possible to plant a flag without appearing to be, as one committee member put it, “taking possession of the moon”? A telegenically inferior plan to use a boxed set of miniature flags of all nations was considered and rejected. The flag would fly.

  But not without help from the NASA Technical Services Division. A flag doesn’t fly without wind. The moon has no atmosphere to speak of, and thus no wind. And though it has only about a sixth the gravity of Earth, that is enough to bring a flag down in an inglorious droop. So a crossbar was hinged to the pole and a hem sewn along the top of the flag. Now the Stars and Stripes would appear to be flying in a brisk wind—convincingly enough to prompt decades of moon hoax jabber—though in fact it was hanging, less a flag than a diminutive patriotic curtain.

  Challenges remained. How do you fit a flagpole into the cramped, overpacked confines of a Lunar Module? Engineers were sent off to design a collapsible pole and crossbar. Even then, there wasn’t room. The Lunar Flag Assembly—as flag, pole, and crossbar had ine
vitably come to be known—would have to be mounted on the outside of the lander. But this meant it would have to withstand the 2,000-degree Fahrenheit heat generated by the nearby descent engine. Tests were undertaken. The flag melted at 300 degrees. The Structures and Mechanics Division was called in, and a protective case was fashioned from layers of aluminum, steel, and Thermoflex insulation.

  Just as it was beginning to look as though the flag was finally ready, someone pointed out that the astronauts, owing to the pressurized suits they’d be wearing, would have limited grip strength and range of motion. Would they be able to extract the flag assembly from its insulated sheath? Or would they stand there in the gaze of millions, grasping futilely? Did they have the reach needed to extend the telescoping segments? Only one way to know: Prototypes were made and the crew convened for a series of flag-assembly deployment simulations.

  Finally came the day. The flag was packed (a four-step procedure supervised by the chief of quality assurance) and mounted on the Lunar Module (eleven steps), and off it went to the moon. Where the telescoping crossbar wouldn’t fully extend and the lunar soil was so hard that Neil Armstrong couldn’t plant the staff more than about 6 or 8 inches down, creating conjecture that the flag was most likely blown over by the engine blast of the Ascent Module.

  Welcome to space. Not the parts you see on TV, the triumphs and the tragedies, but the stuff in between—the small comedies and everyday victories. What drew me to the topic of space exploration was not the heroics and adventure stories, but the very human and sometimes absurd struggles behind them. The Apollo astronaut who worried that he, personally, was about to lose the moon race for the United States by throwing up on the morning of his spacewalk, causing talk of tabling it. Or the first man in space, Yuri Gagarin, recalling that as he walked the red carpet before the Presidium of the Central Committee of the Communist Party of the Soviet Union and a cheering crowd of thousands, he noticed that his shoelace was undone and could think of nothing else.

  At the end of the Apollo program, astronauts were interviewed to get their feedback on a range of topics. One of the questions: If an astronaut were to die outside the spacecraft during a spacewalk, what should you do? “Cut him loose,” read one of the answers. All agreed: An attempt to recover the body could endanger other crew members’ lives. Only a person who has experienced firsthand the not insignificant struggle of entering a space capsule in a pressurized suit could so unequivocally utter those words. Only someone who has drifted free in the unlimited stretch of the universe could understand that burial in space, like the sailor’s burial at sea, holds not disrespect but honor. In orbit, everything gets turned on its head. Shooting stars streak past below you, and the sun rises in the middle of the night. Space exploration is in some ways an exploration of what it means to be human. How much normalcy can people forgo? For how long, and what does it do to them?

  Early in my research, I came across a moment—forty minutes into the eighty-eighth hour of Gemini VII—which, for me, sums up the astronaut experience and why it fascinates me. Astronaut Jim Lovell is telling Mission Control about an image he has captured on film—“a beautiful shot of a full Moon against the black sky and the strato formations of the clouds of the earth below,” reads the mission transcript. After a momentary silence, Lovell’s crewmate Frank Borman presses the TALK button. “Borman’s dumping urine. Urine [in] approximately one minute.”

  Two lines further along, we see Lovell saying, “What a sight to behold!” We don’t know what he’s referring to, but there’s a good chance it’s not the moon. According to more than one astronaut memoir, one of the most beautiful sights in space is that of a sun-illumined flurry of flash-frozen waste-water droplets. Space doesn’t just encompass the sublime and the ridiculous. It erases the line between.

  HE’S SMART BUT HIS BIRDS ARE SLOPPY

  Japan Picks an Astronaut

  First you remove your shoes, as you would upon entering a Japanese home. You are given a pair of special isolation chamber slippers, light blue vinyl imprinted with the Japan Aerospace Exploration Agency logo, the letters JAXA leaning forward as though rushing into space at terrific speed. The isolation chamber, a freestanding structure inside building C-5 at JAXA’s headquarters in Tsukuba Science City, is in fact a home of sorts, for one week, for the ten finalists competing for two openings in the Japanese astronaut corps. When I came here last month, there wasn’t much to see—a bedroom with curtained “sleeping boxes,” and an adjoining common room with a long dining table and chairs. It’s more about being seen. Five closed-circuit cameras mounted near the ceiling allow a panel of psychiatrists, psychologists, and JAXA managers to observe the applicants. To a large extent, their behavior and the panel’s impressions of them during their stay will determine which two will wear the JAXA logo on spacesuits instead of slippers.

  The idea is to get a better sense of who these men and women are, and how well they’re suited to life in space. An intelligent, highly motivated person can hide undesirable facets of his or her character in an interview* or on a questionnaire—which together have weeded out applicants with obvious personality disorders—but not so easily under a weeklong observation. In the words of JAXA psychologist Natsuhiko Inoue, “It’s difficult to be a good man always.” Isolation chambers are also a way to judge things like teamwork, leadership, and conflict management—group skills that can’t be assessed in a one-on-one interview. (NASA does not use isolation chambers.)

  The observation room is upstairs from the chamber. It is Wednesday, day three of the seven-day isolation. A row of closed-circuit TVs are lined up for the observers, who sit at long tables with their notepads and cups of tea. Three are here now, university psychiatrists and psychologists, staring at the TVs like customers at Best Buy contemplating a purchase. One TV, inexplicably, is broadcasting a daytime talk show.

  Inoue sits at the control console, with its camera zooms and microphone controls and a second bank of tiny TV monitors above his head. At forty, he is accomplished for his age and widely respected in the field of space psychology, yet something in his appearance and demeanor makes you want to reach over and pinch his cheek. Like many male employees here, he wears open-toed slippers over socks. As an American, I have large gaps in my understanding of Japanese slipper etiquette, but to me it suggests that JAXA, as much as his house, feels like home. For this week, anyway, it would be understandable; his shift begins at 6 A.M. and ends just after 10 P.M.

  On camera now, one of the applicants can be seen lifting a stack of 9-by-11-inch envelopes from a cardboard box. Each envelope is labeled with an applicant’s identifying letter—A through J—and contains a sheet of instructions and a square, flat cellophane-wrapped package. Inoue says the materials are for a test of patience and accuracy under pressure. The candidates tear open the packages and pull out sheaves of colored paper squares. “The test is involving…I am sorry, I don’t know the word in English. A form of paper craft.”

  “Origami?”

  “Origami, yes!” Earlier today, I used the handicapped stall in the hallway bathroom. On the wall was a confusing panel of levers, toggles, pull chains. It was like the cockpit of the Space Shuttle. I yanked a pull-chain, aiming to flush, and set off the emergency Nurse Call alarm. I’m wearing pretty much the same face right now. It’s my Wha? face. For the next hour and a half, the men and women who vie to become Japan’s next astronauts, heroes to their countrymen, will be making paper cranes.

  “One thousand cranes.” JAXA’s chief medical officer, Shoichi Tachibana, introduces himself. He’s been standing quietly behind us. Tachibana came up with the test. A Japanese tradition holds that a person who folds a thousand cranes will be granted health and longevity. (The gift is apparently transferable; the cranes, strung on lengths of thread, are typically given to patients in hospitals.) Later, Tachibana will place a perfect yellow crane, hardly bigger than a grasshopper, onto the table where I sit. A tiny dinosaur will appear on the arm of the sofa in the corner. He’s like
one of those creepy movie villains who sneak into the hero’s home and leave behind a tiny origami animal, their creepy villain calling card, just to let him know they were there. Or, you know, a guy who enjoys origami.

  The applicants have until Sunday to finish the cranes. Paper squares are spread across the table, the vibrancy of the colors played up by the drabness of the room. Along with the shoebox architecture and the rockets reclining around the grounds, JAXA has managed to duplicate the uniquely unappealing green-gray you often see on NASA interior walls. It’s a color I have seen nowhere else and on no paint chip, yet here it is.

  The genius of the Thousand Cranes test is that it creates a chronological record of each candidate’s work. As they complete their cranes, candidates string them on a single long thread. At the end of the isolation, everyone’s string of cranes will be taken away and analyzed. It’s forensic origami: As the deadline nears and the pressure increases, do the candidate’s creases become sloppy? How do the first ten cranes compare to the last? “Deterioration of accuracy shows impatience under stress,” Inoue says.

  I have been told that 90 percent of a typical mission on the International Space Station (ISS) is devoted to assembling, repairing, or maintaining the spacecraft itself. It’s rote work, much of it done while wearing a pressurized suit with a limited oxygen supply—a ticking clock. Astronaut Lee Morin described his role in installing the midsection of the ISS truss, the backbone to which various laboratory modules are attached. “It’s held on with thirty bolts. I personally tightened twelve of them.” (“So that’s two years of education for each bolt,” he couldn’t help adding.) The spacesuit systems lab at Johnson Space Center has a glove box that mimics the vacuum of space and inflates a pair of pressurized gloves. In the box with the gloves is one of the heavy-duty carabiners that tether astronauts and their tools to the exterior of the space station while they work. Trying to work the tether is like dealing cards with oven mitts on. Simply closing one’s fist tires the hand within minutes. You cannot be the sort of person who gets frustrated easily and turns in a haphazard performance.

 

‹ Prev