by Carl Sagan
By three billion years ago, a number of one-celled plants had joined together, perhaps because a mutation prevented a single cell from separating after splitting in two. The first multicellular organisms had evolved. Every cell of your body is a kind of commune, with once free-living parts all banded together for the common good. And you are made of a hundred trillion cells. We are, each of us, a multitude.
Sex seems to have been invented around two billion years ago. Before then, new varieties of organisms could arise only from the accumulation of random mutations—the selection of changes, letter by letter, in the genetic instructions. Evolution must have been agonizingly slow. With the invention of sex, two organisms could exchange whole paragraphs, pages and books of their DNA code, producing new varieties ready for the sieve of selection. Organisms are selected to engage in sex—the ones that find it uninteresting quickly become extinct. And this is true not only of the microbes of two billion years ago. We humans also have a palpable devotion to exchanging segments of DNA today.
By one billion years ago, plants, working cooperatively, had made a stunning change in the environment of the Earth. Green plants generate molecular oxygen. Since the oceans were by now filled with simple green plants, oxygen was becoming a major constituent of the Earth’s atmosphere, altering it irreversibly from its original hydrogen-rich character and ending the epoch of Earth history when the stuff of life was made by nonbiological processes. But oxygen tends to make organic molecules fall to pieces. Despite our fondness for it, it is fundamentally a poison for unprotected organic matter. The transition to an oxidizing atmosphere posed a supreme crisis in the history of life, and a great many organisms, unable to cope with oxygen, perished. A few primitive forms, such as the botulism and tetanus bacilli, manage to survive even today only in oxygen-free environments. The nitrogen in the Earth’s atmosphere is much more chemically inert and therefore much more benign than oxygen. But it, too, is biologically sustained. Thus, 99 percent of the Earth’s atmosphere is of biological origin. The sky is made by life.
For most of the four billion years since the origin of life, the dominant organisms were microscopic blue-green algae, which covered and filled the oceans. Then some 600 million years ago, the monopolizing grip of the algae was broken and an enormous proliferation of new lifeforms emerged, an event called the Cambrian explosion. Life had arisen almost immediately after the origin of the Earth, which suggests that life may be an inevitable chemical process on an Earth-like planet. But life did not evolve much beyond blue-green algae for three billion years, which suggests that large lifeforms with specialized organs are hard to evolve, harder even than the origin of life. Perhaps there are many other planets that today have abundant microbes but no big beasts and vegetables.
Soon after the Cambrian explosion, the oceans teemed with many different forms of life. By 500 million years ago there were vast herds of trilobites, beautifully constructed animals, a little like large insects; some hunted in packs on the ocean floor. They stored crystals in their eyes to detect polarized light. But there are no trilobites alive today; there have been none for 200 million years. The Earth used to be inhabited by plants and animals of which there is today no living trace. And of course every species now on the planet once did not exist. There is no hint in the old rocks of animals like us. Species appear, abide more or less briefly and then flicker out.
Before the Cambrian explosion species seem to have succeeded one another rather slowly. In part this may be because the richness of our information declines rapidly the farther into the past we peer; in the early history of our planet, few organisms had hard parts and soft beings leave few fossil remains. But in part the sluggish rate of appearance of dramatically new forms before the Cambrian explosion is real; the painstaking evolution of cell structure and biochemistry is not immediately reflected in the external forms revealed by the fossil record. After the Cambrian explosion, exquisite new adaptations followed one another with comparatively breathtaking speed. In rapid succession, the first fish and the first vertebrates appeared; plants, previously restricted to the oceans, began the colonization of the land; the first insect evolved, and its descendants became the pioneers in the colonization of the land by animals; winged insects arose together with the amphibians, creatures something like the lungfish, able to survive both on land and in the water; the first trees and the first reptiles appeared; the dinosaurs evolved; the mammals emerged, and then the first birds; the first flowers appeared; the dinosaurs became extinct; the earliest cetaceans, ancestors to the dolphins and whales, arose and in the same period the primates—the ancestors of the monkeys, the apes and the humans. Less than ten million years ago, the first creatures who closely resembled human beings evolved, accompanied by a spectacular increase in brain size. And then, only a few million years ago, the first true humans emerged.
Human beings grew up in forests; we have a natural affinity for them. How lovely a tree is, straining toward the sky. Its leaves harvest sunlight to photosynthesize, so trees compete by shadowing their neighbors. If you look closely you can often see two trees pushing and shoving with languid grace. Trees are great and beautiful machines, powered by sunlight, taking in water from the ground and carbon dioxide from the air, converting these materials into food for their use and ours. The plant uses the carbohydrates it makes as an energy source to go about its planty business. And we animals, who are ultimately parasites on the plants, steal the carbohydrates so we can go about our business. In eating the plants we combine the carbohydrates with oxygen dissolved in our blood because of our penchant for breathing air, and so extract the energy that makes us go. In the process we exhale carbon dioxide, which the plants then recycle to make more carbohydrates. What a marvelous cooperative arrangement—plants and animals each inhaling the other’s exhalations, a kind of planet-wide mutual mouth-to-stoma resuscitation, the entire elegant cycle powered by a star 150 million kilometers away.
There are tens of billions of known kinds of organic molecules. Yet only about fifty of them are used for the essential activities of life. The same patterns are employed over and over again, conservatively, ingeniously for different functions. And at the very heart of life on Earth—the proteins that control cell chemistry, and the nucleic acids that carry the hereditary instructions—we find these molecules to be essentially identical in all the plants and animals. An oak tree and I are made of the same stuff. If you go far enough back, we have a common ancestor.
The living cell is a regime as complex and beautiful as the realm of the galaxies and the stars. The elaborate machinery of the cell has been painstakingly evolved over four billion years. Fragments of food are transmogrified into cellular machinery. Today’s white blood cell is yesterday’s creamed spinach. How does the cell do it? Inside is a labyrinthine and subtle architecture that maintains its own structure, transforms molecules, stores energy and prepares for self-replication. If we could enter a cell, many of the molecular specks we would see would be protein molecules, some in frenzied activity, others merely waiting. The most important proteins are enzymes, molecules that control the cell’s chemical reactions. Enzymes are like assembly-line workers, each specializing in a particular molecular job: Step 4 in the construction of the nucleotide guanosine phosphate, say, or Step 11 in the dismantling of a molecule of sugar to extract energy, the currency that pays for getting the other cellular jobs done. But the enzymes do not run the show. They receive their instructions—and are in fact themselves constructed—on orders sent from those in charge. The boss molecules are the nucleic acids. They live sequestered in a forbidden city in the deep interior, in the nucleus of the cell.
If we plunged through a pore into the nucleus of the cell, we would find something that resembles an explosion in a spaghetti factory—a disorderly multitude of coils and strands, which are the two kinds of nucleic acids: DNA, which knows what to do, and RNA, which conveys the instructions issued by DNA to the rest of the cell. These are the best that four billion years of ev
olution could produce, containing the full complement of information on how to make a cell, a tree or a human work. The amount of information in human DNA, if written out in ordinary language, would occupy a hundred thick volumes. What is more, the DNA molecules know how to make, with only very rare exceptions, identical copies of themselves. They know extraordinarily much.
DNA is a double helix, the two intertwined strands resembling a “spiral” staircase. It is the sequence or ordering of the nucleotides along either of the constituent strands that is the language of life. During reproduction, the helices separate, assisted by a special unwinding protein, each synthesizing an identical copy of the other from nucleotide building blocks floating about nearby in the viscous liquid of the cell nucleus. Once the unwinding is underway, a remarkable enzyme called DNA polymerase helps ensure that the copying works almost perfectly. If a mistake is made, there are enzymes which snip the mistake out and replace the wrong nucleotide by the right one. These enzymes are a molecular machine with awesome powers.
In addition to making accurate copies of itself—which is what heredity is about—nuclear DNA directs the activities of the cell—which is what metabolism is about—by synthesizing another nucleic acid called messenger RNA, each of which passes to the extranuclear provinces and there controls the construction, at the right time, in the right place, of one enzyme. When all is done, a single enzyme molecule has been produced, which then goes about ordering one particular aspect of the chemistry of the cell.
Human DNA is a ladder a billion nucleotides long. Most possible combinations of nucleotides are nonsense: they would cause the synthesis of proteins that perform no useful function. Only an extremely limited number of nucleic acid molecules are any good for lifeforms as complicated as we. Even so, the number of useful ways of putting nucleic acids together is stupefyingly large—probably far greater than the total number of electrons and protons in the universe. Accordingly, the number of possible individual human beings is vastly greater than the number that have ever lived: the untapped potential of the human species is immense. There must be ways of putting nucleic acids together that will function far better—by any criterion we choose—than any human being who has ever lived. Fortunately, we do not yet know how to assemble alternative sequences of nucleotides to make alternative kinds of human beings. In the future we may well be able to assemble nucleotides in any desired sequence, to produce whatever characteristics we think desirable—a sobering and disquieting prospect.
Evolution works through mutation and selection. Mutations might occur during replication if the enzyme DNA polymerase makes a mistake. But it rarely makes a mistake. Mutations also occur because of radioactivity or ultraviolet light from the Sun or cosmic rays or chemicals in the environment, all of which can change the nucleotides or tie the nucleic acids up in knots. If the mutation rate is too high, we lose the inheritance of four billion years of painstaking evolution. If it is too low, new varieties will not be available to adapt to some future change in the environment. The evolution of life requires a more or less precise balance between mutation and selection. When that balance is achieved, remarkable adaptations occur.
A change in a single DNA nucleotide causes a change in a single amino acid in the protein for which that DNA codes. The red blood cells of people of European descent look roughly globular. The red blood cells of some people of African descent look like sickles or crescent moons. Sickle cells carry less oxygen and consequently transmit a kind of anemia. They also provide major resistance against malaria. There is no question that it is better to be anemic than to be dead. This major influence on the function of the blood—so striking as to be readily apparent in photographs of red blood cells—is the result of a change in a single nucleotide out of the ten billion in the DNA of a typical human cell. We are still ignorant of the consequences of changes in most of the other nucleotides.
We humans look rather different from a tree. Without a doubt we perceive the world differently than a tree does. But down deep, at the molecular heart of life, the trees and we are essentially identical. We both use nucleic acids for heredity; we both use proteins as enzymes to control the chemistry of our cells. Most significantly, we both use precisely the same code book for translating nucleic acid information into protein information, as do virtually all the other creatures on the planet.* The usual explanation of this molecular unity is that we are, all of us—trees and people, angler fish and slime molds and paramecia—descended from a single and common instance of the origin of life in the early history of our planet. How did the critical molecules then arise?
In my laboratory at Cornell University we work on, among other things, prebiological organic chemistry, making some notes of the music of life. We mix together and spark the gases of the primitive Earth: hydrogen, water, ammonia, methane, hydrogen sulfide—all present, incidentally, on the planet Jupiter today and throughout the Cosmos. The sparks correspond to lightning—also present on the ancient Earth and on modern Jupiter. The reaction vessel is initially transparent: the precursor gases are entirely invisible. But after ten minutes of sparking, we see a strange brown pigment slowly streaking the sides of the vessel. The interior gradually becomes opaque, covered with a thick brown tar. If we had used ultraviolet light—simulating the early Sun—the results would have been more or less the same. The tar is an extremely rich collection of complex organic molecules, including the constituent parts of proteins and nucleic acids. The stuff of life, it turns out, can be very easily made.
Such experiments were first performed in the early 1950’s by Stanley Miller, then a graduate student of the chemist Harold Urey. Urey had argued compellingly that the early atmosphere of the Earth was hydrogen-rich, as is most of the Cosmos; that the hydrogen has since trickled away to space from Earth, but not from massive Jupiter; and that the origin of life occurred before the hydrogen was lost. After Urey suggested that such gases be sparked, someone asked him what he expected to make in such an experiment. Urey replied, “Beilstein.” Beilstein is the massive German compendium in 28 volumes, listing all the organic molecules known to chemists.
Using only the most abundant gases that were present on the early Earth and almost any energy source that breaks chemical bonds, we can produce the essential building blocks of life. But in our vessel are only the notes of the music of life—not the music itself. The molecular building blocks must be put together in the correct sequence. Life is certainly more than the amino acids that make up its proteins and the nucleotides that make up its nucleic acids. But even in ordering these building blocks into long-chain molecules, there has been substantial laboratory progress. Amino acids have been assembled under primitive Earth conditions into molecules resembling proteins. Some of them feebly control useful chemical reactions, as enzymes do. Nucleotides have been put together into strands of nucleic acid a few dozen units long. Under the right circumstances in the test tube, short nucleic acids can synthesize identical copies of themselves.
No one has so far mixed together the gases and waters of the primitive Earth and at the end of the experiment had something crawl out of the test tube. The smallest living things known, the viroids, are composed of less than 10,000 atoms. They cause several different diseases in cultivated plants and have probably most recently evolved from more complex organisms rather than from simpler ones. Indeed, it is hard to imagine a still simpler organism that is in any sense alive. Viroids are composed exclusively of nucleic acid, unlike the viruses, which also have a protein coat. They are no more than a single strand of RNA with either a linear or a closed circular geometry. Viroids can be so small and still thrive because they are thoroughgoing, unremitting parasites. Like viruses, they simply take over the molecular machinery of a much larger, well-functioning cell and change it from a factory for making more cells into a factory for making more viroids.
The smallest known free-living organisms are the PPLO (pleuropneumonia-like organisms) and similar small beasts. They are composed of about fifty millio
n atoms. Such organisms, having to be more self-reliant, are also more complicated than viroids and viruses. But the environment of the Earth today is not extremely favorable for simple forms of life. You have to work hard to make a living. You have to be careful about predators. In the early history of our planet, however, when enormous amounts of organic molecules were being produced by sunlight in a hydrogen-rich atmosphere, very simple, nonparasitic organisms had a fighting chance. The first living things may have been something like free-living viroids only a few hundred nucleotides long. Experimental work on making such creatures from scratch may begin by the end of the century. There is still much to be understood about the origin of life, including the origin of the genetic code. But we have been performing such experiments for only some thirty years. Nature has had a four-billion-year head start. All in all, we have not done badly.
Nothing in such experiments is unique to the Earth. The initial gases, and the energy sources, are common throughout the Cosmos. Chemical reactions like those in our laboratory vessels may be responsible for the organic matter in interstellar space and the amino acids found in meteorites. Some similar chemistry must have occurred on a billion other worlds in the Milky Way Galaxy. The molecules of life fill the Cosmos.
But even if life on another planet has the same molecular chemistry as life here, there is no reason to expect it to resemble familiar organisms. Consider the enormous diversity of living things on Earth, all of which share the same planet and an identical molecular biology. Those other beasts and vegetables are probably radically different from any organism we know here. There may be some convergent evolution because there may be only one best solution to a certain environmental problem—something like two eyes, for example, for binocular vision at optical frequencies. But in general the random character of the evolutionary process should create extraterrestrial creatures very different from any that we know.