Cosmos

Home > Science > Cosmos > Page 26
Cosmos Page 26

by Carl Sagan


  There are ninety-two chemically distinct kinds of naturally occurring atoms. They are called the chemical elements and until recently constituted everything on our planet, although they are mainly found combined into molecules. Water is a molecule made of hydrogen and oxygen atoms. Air is made mostly of the atoms nitrogen (N), oxygen (O), carbon (C), hydrogen (H) and argon (Ar), in the molecular forms N2, O2, CO2, H2O and Ar. The Earth itself is a very rich mixture of atoms, mostly silicon,* oxygen, aluminum, magnesium and iron. Fire is not made of chemical elements at all. It is a radiating plasma in which the high temperature has stripped some of the electrons from their nuclei. Not one of the four ancient Ionian and alchemical “elements” is in the modern sense an element at all: one is a molecule, two are mixtures of molecules, and the last is a plasma.

  Since the time of the alchemists, more and more elements have been discovered, the latest to be found tending to be the rarest. Many are familiar—those that primarily make up the Earth; or those fundamental to life. Some are solids, some gases, and two (bromine and mercury) are liquids at room temperature. Scientists conventionally arrange them in order of complexity. The simplest, hydrogen, is element 1; the most complex, uranium, is element 92. Other elements are less familiar—hafnium, erbium, dyprosium and praseodymium, say, which we do not much bump into in everyday life. By and large, the more familiar an element is, the more abundant it is. The Earth contains a great deal of iron and rather little yttrium. There are, of course, exceptions to this rule, such as gold or uranium, elements prized because of arbitrary economic conventions or aesthetic judgments, or because they have remarkable practical applications.

  The fact that atoms are composed of three kinds of elementary particles—protons, neutrons and electrons—is a comparatively recent finding. The neutron was not discovered until 1932. Modern physics and chemistry have reduced the complexity of the sensible world to an astonishing simplicity: three units put together in various patterns make, essentially, everything.

  The neutrons, as we have said and as their name suggests, carry no electrical charge. The protons have a positive charge and the electrons an equal negative charge. The attraction between the unlike charges of electrons and protons is what holds the atom together. Since each atom is electrically neutral, the number of protons in the nucleus must exactly equal the number of electrons in the electron cloud. The chemistry of an atom depends only on the number of electrons, which equals the number of protons, and which is called the atomic number. Chemistry is simply numbers, an idea Pythagoras would have liked. If you are an atom with one proton, you are hydrogen; two, helium; three, lithium; four, beryllium; five, boron; six, carbon; seven, nitrogen; eight, oxygen; and so on, up to 92 protons, in which case your name is uranium.

  Like charges, charges of the same sign, strongly repel one another. We can think of it as a dedicated mutual aversion to their own kind, a little as if the world were densely populated by anchorites and misanthropes. Electrons repel electrons. Protons repel protons. So how can a nucleus stick together? Why does it not instantly fly apart? Because there is another force of nature: not gravity, not electricity, but the short-range nuclear force, which, like a set of hooks that engage only when protons and neutrons come very close together, thereby overcomes the electrical repulsion among the protons. The neutrons, which contribute nuclear forces of attraction and no electrical forces of repulsion, provide a kind of glue that helps to hold the nucleus together. Longing for solitude, the hermits have been chained to their grumpy fellows and set among others given to indiscriminate and voluble amiability.

  Two protons and two neutrons are the nucleus of a helium atom, which turns out to be very stable. Three helium nuclei make a carbon nucleus; four, oxygen; five, neon; six, magnesium; seven, silicon; eight, sulfur; and so on. Every time we add one or more protons and enough neutrons to keep the nucleus together, we make a new chemical element. If we subtract one proton and three neutrons from mercury, we make gold, the dream of the ancient alchemists. Beyond uranium there are other elements that do not naturally occur on Earth. They are synthesized by human beings and in most cases promptly fall to pieces. One of them, Element 94, is called plutonium and is one of the most toxic substances known. Unfortunately, it falls to pieces rather slowly.

  Where do the naturally occurring elements come from? We might contemplate a separate creation of each atomic species. But the universe, all of it, almost everywhere, is 99 percent hydrogen and helium,* the two simplest elements. Helium, in fact, was detected on the Sun before it was found on the Earth—hence its name (from Helios, one of the Greek sun gods). Might the other chemical elements have somehow evolved from hydrogen and helium? To balance the electrical repulsion, pieces of nuclear matter would have to be brought very close together so that the short-range nuclear forces are engaged. This can happen only at very high temperatures where the particles are moving so fast that the repulsive force does not have time to act—temperatures of tens of millions of degrees. In nature, such high temperatures and attendant high pressures are common only in the insides of the stars.

  We have examined our Sun, the nearest star, in various wavelengths from radio waves to ordinary visible light to X-rays, all of which arise only from its outermost layers. It is not exactly a red-hot stone, as Anaxagoras thought, but rather a great ball of hydrogen and helium gas, glowing because of its high temperatures, in the same way that a poker glows when it is brought to red heat. Anaxagoras was at least partly right. Violent solar storms produce brilliant flares that disrupt radio communications on Earth; and immense arching plumes of hot gas, guided by the Sun’s magnetic field, the solar prominences, which dwarf the Earth. The sunspots, sometimes visible to the naked eye at sunset, are cooler regions of enhanced magnetic field strength. All this incessant, roiling, turbulent activity is in the comparatively cool visible surface. We see only to temperatures of about 6,000 degrees. But the hidden interior of the Sun, where sunlight is being generated, is at 40 million degrees.

  Stars and their accompanying planets are born in the gravitational collapse of a cloud of interstellar gas and dust. The collision of the gas molecules in the interior of the cloud heats it, eventually to the point where hydrogen begins to fuse into helium: four hydrogen nuclei combine to form a helium nucleus, with an attendant release of a gamma-ray photon. Suffering alternate absorption and emission by the overlying matter, gradually working its way toward the surface of the star, losing energy at every step, the photon’s epic journey takes a million years until, as visible light, it reaches the surface and is radiated to space. The star has turned on. The gravitational collapse of the prestellar cloud has been halted. The weight of the outer layers of the star is now supported by the high temperatures and pressures generated in the interior nuclear reactions. The Sun has been in such a stable situation for the past five billion years. Thermonuclear reactions like those in a hydrogen bomb are powering the Sun in a contained and continuous explosion, converting some four hundred million tons (4 × 1014 grams) of hydrogen into helium every second. When we look up at night and view the stars, everything we see is shining because of distant nuclear fusion.

  In the direction of the star Deneb, in the constellation of Cygnus the Swan, is an enormous glowing superbubble of extremely hot gas, probably produced by supernova explosions, the deaths of stars, near the center of the bubble. At the periphery, interstellar matter is compressed by the supernova shock wave, triggering new generations of cloud collapse and star formation. In this sense, stars have parents; and, as is sometimes also true for humans, a parent may die in the birth of the child.

  Stars like the Sun are born in batches, in great compressed cloud complexes such as the Orion Nebula. Seen from the outside, such clouds seem dark and gloomy. But inside, they are brilliantly illuminated by the hot newborn stars. Later, the stars wander out of their nursery to seek their fortunes in the Milky Way, stellar adolescents still surrounded by tufts of glowing nebulosity, residues still gravitationally attached of their
amniotic gas. The Pleiades are a nearby example. As in the families of humans, the maturing stars journey far from home, and the siblings see little of each other. Somewhere in the Galaxy there are stars—perhaps dozens of them—that are the brothers and sisters of the Sun, formed from the same cloud complex, some 5 billion years ago. But we do not know which stars they are. They may, for all we know, be on the other side of the Milky Way.

  The conversion of hydrogen into helium in the center of the Sun not only accounts for the Sun’s brightness in photons of visible light; it also produces a radiance of a more mysterious and ghostly kind: The Sun glows faintly in neutrinos, which, like photons, weigh nothing and travel at the speed of light. But neutrinos are not photons. They are not a kind of light. Neutrinos, like protons, electrons and neutrons, carry an intrinsic angular momentum, or spin, while photons have no spin at all. Matter is transparent to neutrinos, which pass almost effortlessly through the Earth and through the Sun. Only a tiny fraction of them is stopped by the intervening matter. As I look up at the Sun for a second, a billion neutrinos pass through my eyeball. Of course, they are not stopped at the retina as ordinary photons are but continue unmolested through the back of my head. The curious part is that if at night I look down at the ground, toward the place where the Sun would be (if the Earth were not in the way), almost exactly the same number of solar neutrinos pass through my eyeball, pouring through an interposed Earth which is as transparent to neutrinos as a pane of clear glass is to visible light.

  If our knowledge of the solar interior is as complete as we think, and if we also understand the nuclear physics that makes neutrinos, then we should be able to calculate with fair accuracy how many solar neutrinos we should receive in a given area—such as my eyeball—in a given unit of time, such as a second. Experimental confirmation of the calculation is much more difficult. Since neutrinos pass directly through the Earth, we cannot catch a given one. But for a vast number of neutrinos, a small fraction will interact with matter and in the appropriate circumstances might be detected. Neutrinos can on rare occasion convert chlorine atoms into argon atoms, with the same total number of protons and neutrons. To detect the predicted solar neutrino flux, you need an immense amount of chlorine, so American physicists have poured a huge quantity of cleaning fluid into the Homestake Mine in Lead, South Dakota. The chlorine is microchemically swept for the newly produced argon. The more argon found, the more neutrinos inferred. These experiments imply that the Sun is dimmer in neutrinos than the calculations predict.

  There is a real and unsolved mystery here. The low solar neutrino flux probably does not put our view of stellar nucleosynthesis in jeopardy, but it surely means something important. Proposed explanations range from the hypothesis that neutrinos fall to pieces during their passage between the Sun and the Earth to the idea that the nuclear fires in the solar interior are temporarily banked, sunlight being generated in our time partly by slow gravitational contraction. But neutrino astronomy is very new. For the moment we stand amazed at having created a tool that can peer directly into the blazing heart of the Sun. As the sensitivity of the neutrino telescope improves, it may become possible to probe nuclear fusion in the deep interiors of the nearby stars.

  But hydrogen fusion cannot continue forever: in the Sun or any other star, there is only so much hydrogen fuel in its hot interior. The fate of a star, the end of its life cycle, depends very much on its initial mass. If, after whatever matter it has lost to space, a star retains two or three times the mass of the Sun, it ends its life cycle in a startlingly different mode than the Sun. But the Sun’s fate is spectacular enough. When the central hydrogen has all reacted to form helium, five or six billion years from now, the zone of hydrogen fusion will slowly migrate outward, an expanding shell of thermonuclear reactions, until it reaches the place where the temperatures are less than about ten million degrees. Then hydrogen fusion will shut itself off. Meanwhile the self-gravity of the Sun will force a renewed contraction of its helium-rich core and a further increase in its interior temperatures and pressures. The helium nuclei will be jammed together still more tightly, so much so that they begin to stick together, the hooks of their short-range nuclear forces becoming engaged despite the mutual electrical repulsion. The ash will become fuel, and the Sun will be triggered into a second round of fusion reactions.

  This process will generate the elements carbon and oxygen and provide additional energy for the Sun to continue shining for a limited time. A star is a phoenix, destined to rise for a time from its own ashes.* Under the combined influence of hydrogen fusion in a thin shell far from the solar interior and the high temperature helium fusion in the core, the Sun will undergo a major change: its exterior will expand and cool. The Sun will become a red giant star, its visible surface so far from its interior that the gravity at its surface grows feeble, its atmosphere expanding into space in a kind of stellar gale. When the Sun, ruddy and bloated, becomes a red giant, it will envelop and devour the planets Mercury and Venus—and probably the Earth as well. The inner solar system will then reside within the Sun.

  Billions of years from now, there will be a last perfect day on Earth. Thereafter the Sun will slowly become red and distended, presiding over an Earth sweltering even at the poles. The Arctic and Antarctic icecaps will melt, flooding the coasts of the world. The high oceanic temperatures will release more water vapor into the air, increasing cloudiness, shielding the Earth from sunlight and delaying the end a little. But solar evolution is inexorable. Eventually the oceans will boil, the atmosphere will evaporate away to space and a catastrophe of the most immense proportions imaginable will overtake our planet.† In the meantime, human beings will almost certainly have evolved into something quite different. Perhaps our descendants will be able to control or moderate stellar evolution. Or perhaps they will merely pick up and leave for Mars or Europa or Titan or, at last, as Robert Goddard envisioned, seek out an uninhabited planet in some young and promising planetary system.

  The Sun’s stellar ash can be reused for fuel only up to a point. Eventually the time will come when the solar interior is all carbon and oxygen, when at the prevailing temperatures and pressures no further nuclear reactions can occur. After the central helium is almost all used up, the interior of the Sun will continue its postponed collapse, the temperatures will rise again, triggering a last round of nuclear reactions and expanding the solar atmosphere a little. In its death throes, the Sun will slowly pulsate, expanding and contracting once every few millennia, eventually spewing its atmosphere into space in one or more concentric shells of gas. The hot exposed solar interior will flood the shell with ultraviolet light, inducing a lovely red and blue fluorescence extending beyond the orbit of Pluto. Perhaps half the mass of the Sun will be lost in this way. The solar system will then be filled with an eerie radiance, the ghost of the Sun, outward bound.

  When we look around us in our little corner of the Milky Way, we see many stars surrounded by spherical shells of glowing gas, the planetary nebulae. (They have nothing to do with planets, but some of them seemed reminiscent in inferior telescopes of the blue-green discs of Uranus and Neptune.) They appear as rings, but only because, as with soap bubbles, we see more of them at the periphery than at the center. Every planetary nebula is a token of a star in extremis. Near the central star there may be a retinue of dead worlds, the remnants of planets once full of life and now airless and ocean-free, bathed in a wraithlike luminance. The remains of the Sun, the exposed solar core at first enveloped in its planetary nebula, will be a small hot star, cooling to space, collapsed to a density unheard of on Earth, more than a ton per teaspoonful. Billions of years hence, the Sun will become a degenerate white dwarf, cooling like all those points of light we see at the centers of planetary nebulae from high surface temperatures to its ultimate state, a dark and dead black dwarf.

  Two stars of roughly the same mass will evolve roughly in parallel. But a more massive star will spend its nuclear fuel faster, become a red giant sooner, an
d be first to enter the final white dwarf decline. There should therefore be, as there are, many cases of binary stars, one component a red giant, the other a white dwarf. Some such pairs are so close together that they touch, and the glowing stellar atmosphere flows from the distended red giant to the compact white dwarf, tending to fall on a particular province of the surface of the white dwarf. The hydrogen accumulates, compressed to higher and higher pressures and temperatures by the intense gravity of the white dwarf, until the stolen atmosphere of the red giant undergoes thermonuclear reactions, and the white dwarf briefly flares into brilliance. Such a binary is called a nova and has quite a different origin from a supernova. Novae occur only in binary systems and are powered by hydrogen fusion; supernovae occur in single stars and are powered by silicon fusion.

  Atoms synthesized in the interiors of stars are commonly returned to the interstellar gas. Red giants find their outer atmospheres blowing away into space; planetary nebulae are the final stages of Sunlike stars blowing their tops. Supernovae violently eject much of their stellar mass into space. The atoms returned are, naturally, those most readily made in the thermonuclear reactions in stellar interiors: Hydrogen fuses into helium, helium into carbon, carbon into oxygen and thereafter, in massive stars, by the successive addition of further helium nuclei, neon, magnesium, silicon, sulfur, and so on are built—additions by stages, two protons and two neutrons per stage, all the way to iron. Direct fusion of silicon also generates iron, a pair of silicon atoms, each with twenty-eight protons and neutrons, joining, at a temperature of billions of degrees, to make an atom of iron with fifty-six protons and neutrons.

 

‹ Prev