Hello World

Home > Other > Hello World > Page 25
Hello World Page 25

by Hannah Fry


  Clinton Foundation 42

  Clubcard (Tesco) 26

  Cohen’s Kappa 215n12

  cold cases 172

  Cold War 18

  Colgan, Steyve 155

  Commodore 64 ix

  COMPAS algorithm 63, 64

  ProPublica analysis

  accuracy of scores 65

  false positives 66

  mistakes 65–8

  racial groups 65–6

  secrecy of 69

  CompStat 149

  computational statistics 12

  computer code 8

  computer intelligence 13 see also AI (artificial intelligence)

  computer science 8

  computing power 5

  considered thought 72

  cookies 34

  Cope, David 189, 190–1, 193

  cops on the dots 155–6

  Corelogic 31

  counter-intuition 122

  creativity, human 192–3

  Creemers, Rogier 46

  creepy line 28, 30, 39

  crime 141–73

  algorithmic regulation 173

  boost effect 151, 152

  burglary 150–1

  cops on the dots 155–6

  geographical patterns 142–3

  gun 158

  hotspots 148, 149, 150–1, 155

  HunchLab algorithm 157–8

  New York City subway 147–50

  predictability of 144

  PredPol algorithm 152–7, 158

  proximity of offenders’ homes 144

  recognizable patterns 143–4

  retail 170

  Strategic Subject List 158

  target hardening 154–5 see also facial recognition

  crime data 143–4

  Crimewatch programme 142

  criminals

  buffer zone 144

  distance decay 144

  knowledge of local geographic area 144

  serial offenders 144, 145

  customers

  data profiles 32

  inferred data 32–4

  insurance data 30–1

  shopping habits 28, 29, 31

  supermarket data 26–8

  superstore data 28–31

  cyclists 129

  Daimler 115, 130

  DARPA (US Defence Advanced Research Projects Agency)

  driverless cars 113–16

  investment in 113

  Grand Challenge (2004) 113–14, 117

  course 114

  diversity of vehicles 114

  GPS coordinates 114

  problems 114–15

  top-scoring vehicle 115

  vehicles’ failure to finish 115

  Grand Challenge (2005) 115

  targeting of military vehicles 113–14

  data 25–47

  exchange of 25, 26, 44–5

  dangers of 45

  healthcare 105

  insurance 30–1

  internet browsing history 36–7, 36–8

  internet giants 36

  manipulation and 39–44

  medical records 102–7

  benefits of algorithms 106

  DeepMind 104–5

  disconnected 102–3

  misuse of data 106

  privacy 105–7

  patterns in 79–81, 108

  personal 108

  regulation of

  America 46–7

  Europe 46–7

  global trend 47

  sale of 36–7

  Sesame Credit 45–6, 168

  shopping habits 28, 29, 31

  supermarkets and 26–8

  superstores and 28–31

  data brokers 31–9

  benefits provided by 32

  Cambridge Analytica 39–42

  data profiles 32

  inferred data 32–4, 35

  murky practices of 47

  online adverts 33–5

  rich and detailed datasets 103

  Sesame Credit 45–6

  unregulated 36

  in America 36

  dating algorithms 9

  Davies, Toby 156, 157

  decision trees 56–8

  Deep Blue 5–7, 8

  deep learning 86

  DeepMind

  access to full medical histories 104–5

  consent ignored 105

  outrage 104

  contract with Royal Free NHS Trust 104

  dementia 90–2

  Dewes, Andreas 36–7

  Dhami, Mandeep 75, 76

  diabetic retinopathy 96

  Diaconis, Pesri 124

  diagnostic machines 98–101, 110–11

  differential diagnosis 99

  discrimination 71

  disease

  Alzheimer’s disease 90–1, 92

  diabetic retinopathy 96

  diagnosing 59, 99, 100

  hereditary causes 108

  Hippocrates’s understanding of 80

  Huntington’s disease 110

  motor neurone disease 100

  pre-modern medicine 80 see also breast cancer

  distance decay 144

  DNA (deoxyribonucleic acid) 106, 109

  testing 164–5

  doctors 81

  unique skills of 81–2

  Dodds, Peter 176–7

  doppelgängers 161–3, 164, 169

  Douglas, Neil 162–3

  driver-assistance technology 131

  driverless cars 113–40

  advantages 137

  algorithms and 117

  Bayes’ red ball analogy 123–4

  ALVINN (Autonomous Land Vehicle In a Neural Network) 118–19

  autonomy 129, 130

  full 127, 130, 134, 138

  Bayes’ theorem 121–4

  breaking the rules of the road 128

  bullying by people 129

  cameras and 117–18

  conditions for 129

  cyclists and 129

  dealing with people 128–9

  difficulties of building 117–18, 127–8

  early technology 116–17

  framing of technology 138

  inevitability of errors 140

  measurement 119, 120

  neural networks 117–18

  potential issues 116

  pre-decided go-zones 130

  sci-fi era 116

  simulations 136–7

  speed and direction 117

  support for drivers 139

  trolley problem 125–6

  Uber 135

  Waymo 129–30

  driverless technology 131

  Dubois, Captain 133, 137

  Duggan, Mark 49

  Dunn, Edwina 26

  early warning systems 18

  earthquakes 151–2

  eBureau 31

  Eckert, Svea 36–7

  empathy 81–2

  ensembles 58

  Eppink, Richard 17, 18

  Epstein, Robert 14–15

  equations 8

  Equivant (formerly Northpointe) 69, 217n38

  errors in algorithms 18–19, 61–2, 76, 159–60, 197–9, 201

  false negatives 62, 87, 88

  false positives 62, 66, 87, 88

  Eureka Prometheus Project 117

  expectant mothers 28–9

  expectations 7

  Experiments in Musical Intelligence (EMI) 189–91, 193

  Face ID (Apple) 165–6

  Facebook 2, 9, 36, 40

  filtering 10

  Likes 39–40

  news feeds experiment 42–3

  personality scores 39

  privacy issues 25

  severing ties with data brokers 47

  FaceFirst 170, 171

  FaceNet (Google) 167, 169

  facial recognition

  accuracy 171

  falling 168

  increasing 169

  algorithms 160–3, 165, 201–2

  2D images 166–7

  3D model of face 165–6

&
nbsp; Face ID (Apple) 165–6

  FaceFirst 170

  FaceNet (Google) 167, 169

  measurements 163

  MegaFace 168–9

  statistical approach 166–7

  Tencent YouTu Lab 169

  in China 168

  cold cases 172

  David Baril incident 171–2

  differences from DNA testing 164–5

  doppelgängers 161–3, 164, 169

  gambling addicts 169–70

  identical looks 162–3, 164, 165

  misidentification 168

  neural networks 166–7

  NYPD statistics 172

  passport officers 161, 164

  police databases of facial images 168

  resemblance 164, 165

  shoplifters 170

  pros and cons of technology 170–1

  software 160

  trade-off 171–3

  Youssef Zaghba incident 172

  fairness 66–8, 201

  tweaking 70

  fake news 42

  false negatives 62, 87, 88

  false positives 62, 66, 87, 88

  FBI (Federal Bureau of Investigation) 168

  Federal Communications Commission (FCC) 36

  Federal Trade Commission 47

  feedback loops 156–7

  films 180–4

  algorithms for 183

  edits 182–3

  IMDb website 181–2

  investment in 180

  John Carter (film) 180

  novelty and 182

  popularity 183–4

  predicting success 180–1

  Rotten Tomatoes website 181

  study 181–2

  keywords 181–2

  filtering algorithms 9–10

  Financial Times 116

  fingerprinting 145, 171

  Firebird II 116

  Firefox 47

  Foothill 156

  Ford 115, 130

  forecasts, decision trees 57–8

  free technology 44

  Fuchs, Thomas 101

  Galton, Francis 107–8

  gambling addicts 169–70

  GDPR (General Data Protection Regulation) 46

  General Motors 116

  genetic algorithms 191–2

  genetic testing 108, 110

  genome, human 108, 110

  geographical patterns 142–3

  geoprofiling 147

  algorithm 144

  Germany

  facial recognition algorithms 161

  linking of healthcare records 103

  Goldman, William 181, 184

  Google 14–15, 36

  creepy line 28, 30, 39

  data security record 105

  FaceNet algorithm 167, 169

  high-paying executive jobs 35 see also DeepMind

  Google Brain 96

  Google Chrome plugins 36–7

  Google Images 69

  Google Maps 120

  Google Search 8

  Google Translate 38

  GPS 3, 13–14, 114

  potential errors 120

  guardian mode 139

  Guerry, André-Michel 143–4

  gun crime 158

  Hamm, John 99

  Hammond, Philip 115

  Harkness, Timandra 105–6

  Harvard researchers experiment (2013) 88–9

  healthcare

  common goal 111–12

  exhibition (1884) 107

  linking of medical records 102–3

  sparse and disconnected dataset 103

  healthcare data 105

  Hinton, Geoffrey 86

  Hippocrates 80

  Hofstadter, Douglas 189–90, 194

  home cooks 30–1

  homosexuality 22

  hotspots, crime 148, 149, 150–1, 155

  Hugo, Christoph von 124–5

  human characteristics, study of 107

  human genome 108, 110

  human intuition 71–4, 77, 122

  humans

  and algorithms

  opposite skills to 139

  prediction 22, 59–61, 62–5

  struggle between 20–4

  understanding the human mind 6

  domination by machines 5–6

  vs machines 59–61, 62–4

  power of veto 19

  PredPol (PREDictive POLicing) 153–4

  strengths of 139

  weaknesses of 139

  Humby, Clive 26, 27, 28

  Hume, David 184–5

  HunchLab 157–8

  Huntington’s disease 110

  IBM 97–8 see also Deep Blue

  Ibrahim, Rahinah 197–8

  Idaho Department of Health and Welfare

  budget tool 16

  arbitrary numbers 16–17

  bugs and errors 17

  Excel spreadsheet 17

  legally unconstitutional 17

  naive trust 17–18

  random results 17

  cuts to Medicaid assistance 16–17

  Medicaid team 17

  secrecy of software 17

  Illinois prisons 55, 56

  image recognition 11, 84–7, 211n13

  inferred data 32–4, 35

  personality traits 40

  Innocence Project 164

  Instagram 36

  insurance 30–1

  genetic tests for Huntington’s disease 110

  life insurance stipulations 109

  unavailability for obese patients 106

  intelligence tracking prevention 47

  internet browsing history 36–8

  anonymous 36, 37

  de-anonymizing 37–8

  personal identifiers 37–8

  sale of 36–7

  Internet Movie Database (IMDb) 181–2

  intuition see human intuition

  jay-walking 129

  Jemaah Islam 198

  Jemaah Islamiyah 198

  Jennings, Ken 97–8

  Jeopardy (TV show) 97–9

  John Carter (film) 180

  Johnson, Richard 50, 51

  Jones Beach 1

  Jones, Robert 13–14

  judges

  anchoring effect 73

  bail, factors for consideration 73

  decision-making

  consistency in 51

  contradictions in 52–3

  differences in 52

  discretion in 53

  unbiased 77

  discrimination and bias 70–1, 75

  intuition and considered thought 72

  lawyers’ preference over algorithms 76–7

  vs machines 59–61

  offenders’ preference over algorithms 76

  perpetuation of bias 73

  sentencing 53–4, 63

  use of algorithms 63, 64

  Weber’s Law 74–5

  Jukebox 192

  junk algorithms 200

  Just Noticeable Difference 74

  justice 49–78

  algorithms and 54–6

  justification for 77

  appeals process 51

  Brixton riots 49–51

  by country

  Australia 53

  Canada 54

  England 54

  Ireland 54

  Scotland 54

  United States 53, 54

  Wales 54

  discretion of judges 53

  discrimination 70–1

  humans vs machines 59–61, 62–4

  hypothetical cases (UK research) 52–3

  defendants appearing twice 52–3

  differences in judgement 52, 53

  hypothetical cases (US research) 51–2

  differences in judgements 52

  differences in sentencing 52

  inherent injustice 77

  machine bias 65–71

  maximum terms 54

  purpose of 77–8

  re-offending 54, 55

  reasonable doubt 51

  rehabilitation 55

&nb
sp; risk-assessment algorithms 56

  sentencing

  consistency in 51

  mitigating factors in 53

  substantial grounds 51

  Kadoodle 15–16

  Kahneman, Daniel 72

  Kanevsky, Dr Jonathan 93, 95

  kangaroos 128

  Kant, Immanuel 185

  Kasparov, Gary 5–7, 202

  Kelly, Frank 87

  Kerner, Winifred 188–9

  Kernighan, Brian x

  Killingbeck 145, 146

  Larson, Steve 188–9

  lasers 119–20

  Leibniz, Gottfried 184

  Leroi, Armand 186, 192–3

  level 0 (driverless technology) 131

  level 1 (driverless technology) 131

  level 2 (driverless technology) 131, 136

  careful attention 134–5

  level 3 (driverless technology) 131

  technical challenge 136

  level 4 (driverless technology) 131

  level 5 (driverless technology) 131

  Li Yingyun 45

  Lickel, Charles 97–8

  LiDAR (Light Detection and Ranging) 119–20

  life insurance 109

  ‘Lockdown’ (52Metro) 177

  logic 8

  logical instructions 8

  London Bridge 172

  London School of Economics (LSE) 129

  Loomis, Eric 217n38

  Los Angeles Police Department 152, 155

  Lucas, Teghan 161–2, 163

  machine-learning algorithms 10–11

  neural networks 85–6

  random forests 58–9

  machines

  art and 194

  bias in 65–71

  diagnostic 98–101, 110–11

  domination of humans 5–6

  vs humans 59–61, 62–4

  paradoxical relationship with 22–3

  recognising images 84–7

  superior judgement of 16

  symbolic dominance over humans 5–6

  Magic Test 200

  magical illusions 18

  mammogram screenings 94, 96

  manipulation 39–44

  micro-manipulation 42–4

  Maple, Jack 147–50

  Marx, Gary 173

  mastectomies 83, 84, 92, 94

  maternity wards, deaths on 81

  mathematical certainty 68

  mathematical objects 8

  McGrayne, Sharon Bertsch 122

  mechanized weaving machines 2

  Medicaid assistance 16–17

  medical conditions, algorithms for 96–7

  medical records 102–7

  benefits of algorithms 106

  DeepMind 104–5

  disconnected 102–3

  misuse of data 106

  privacy 105–7

  medicine 79–112

  in ancient times 80

  cancer diagnoses study 79–80

  complexity of 103–4

  diabetic retinopathy 96

  diagnostic machines 98–101, 110–11

  choosing between individuals and the population 111

  in fifteenth-century China 81

  Hippocrates and 80

  magic and 80

  medical records 102–6

  neural networks 85–6, 95, 96, 219–20n11

  in nineteenth-century Europe 81

  pathology 79, 82–3

  patterns in data 79–81

  predicting dementia 90–2

  scientific base 80 see also Watson (IBM computer)

  Meehl, Paul 21–2

  MegaFace challenge 168–9

 

‹ Prev