Von Braun and his team developed the Jupiter-C, the first ballistic missile based on the Redstone. The Jupiter-C was an interregional ballistic missile (IRBM) that could destroy transportation crossroads and systems in a war with the Soviet Union from 500 miles away. It could power this small capsule to a speed of thirty-eight hundred miles per hour. For guidance, it used an all-inertial system featuring a gyroscopically stabilized platform, computers, a flight path programmed into the rocket before launch, and the activation of the steering mechanism by signals in flight. For control during powered ascent, the Redstone depended on tail fins with movable rudders and refractory carbon vanes mounted in the rocket exhaust.
The first launch of this rocket took place at Cape Canaveral on August 20, 1953, and combat-ready troops tested it in battlefield conditions. The Jupiter-C was then placed on active service with U.S. units in Italy and Turkey. The Cold War rivalry between the United States and the USSR had driven the development of rocket technology; it also drove global nuclear fear.
While the rocket was a technical success, deploying it to Italy and Turkey destabilized the Cold War equilibrium with the Soviet Union. President Dwight D. Eisenhower sent the missiles to Europe knowing this: “It would have been better to dump them in the ocean, instead of trying to dump them on our allies.” Several national security leaders warned that placement of nuclear weapons so close to the Soviet border was a provocative act that invited attack. Moreover, the technology was such that it took hours to ready the missiles for launch—they had to be deployed at fixed above-ground launch sites, where they could be destroyed by a sniper with a high-powered rifle. The United States deployed them anyway. Khrushchev’s gambit in Cuba, where he placed missiles in 1962, was a reaction to these Jupiter missiles. The sides resolved the crisis through back-channel discussions, and each side removed its missiles.
The nuclear fear made real by the Jupiter deployment, and the resulting Cuban missile crisis of October 1962, affected people around the world. The prospect of death in nuclear war prompted many to change their ways of life to deal with the rising threat of nuclear attack. They developed new countermeasures and the protective systems needed to sustain life.
This fear prompted many to build fallout shelters; both Americans and Russians were encouraged to take precautions, and to believe that with enough preparation they could survive a nuclear attack. In addition, the Soviet Union built part of its Moscow Metro system, the Arbatsko-Pokrovskaya Line, exceptionally deep so that it could serve as a collective fallout system for the city. The line housed equipment and supplies to sustain the population during a nuclear attack. Its escalators are some of the longest in the world and move the fastest. The nuclear fear was very real, and while Redstone/Jupiter did not create it, it certainly exacerbated it.
The Redstone version of the rocket, insufficient to send a Mercury capsule into orbit, powered the first two American Mercury flights into space. The missions of Alan Shepard and Gus Grissom in 1961 were suborbital flights of less than thirty minutes. The rocket’s virtue for this mission was that it was a well-tested, reliable system that could achieve basic space operations. For orbital Mercury flights a more powerful launcher was needed.
Rather than upgrading Redstone as the Soviets might have done, NASA used an entirely different ballistic missile modified for human spaceflight. A modified Atlas ICBM got the nod. Developed under the leadership of the hard-driving, intense, and flamboyant USAF Brigadier General Bernard A. Schriever, the SM-65 Atlas program officially began in February 1954, under the name Weapon System 107A. The first Atlas rocket was test fired on June 11, 1955, and a later generation rocket became operational in 1959.
When the Atlas was first conceived in the 1950s, many believed it was a high-risk proposition. In order to reduce its weight, Convair Corporation engineers under the direction of Karel J. Bossart, a pre–World War II immigrant from Belgium, designed the booster with a very thin, internally pressurized fuselage instead of massive struts and a thick metal skin. The “steel balloon,” as it was sometimes called, employed engineering techniques that ran counter to the conservative engineering approach used by von Braun for the V-2 and the Redstone. Von Braun, according to Bossart, needlessly designed his boosters like “bridges,” to withstand any possible shock. For his part, von Braun thought the Atlas too flimsy to hold up during launch. He considered Bossart’s approach much too dangerous for human spaceflight, remarking that the astronaut using the “contraption,” as he called the Atlas booster, “should be getting a medal just for sitting on top of it before he takes off!” The reservations began to melt away, however, when Bossart’s team pressurized one of the boosters and dared one of von Braun’s engineers to knock a hole in it with a sledge hammer. The blow left the booster unharmed, but the recoil from the hammer nearly clubbed the engineer.
Once the challenge of mating the Mercury spacecraft to the Atlas was resolved, the stage was set for Glenn’s February 1962 flight aboard Friendship 7 and the three subsequent Mercury flights in 1962 and 1963 powered by the Atlas rocket.
For its second human spaceflight program NASA turned to yet another ICBM program, the Titan rocket, with a capacity to send the heavier and more capable Gemini spacecraft into Earth orbit. In October 1955 the U.S. Air Force contracted with the Glenn L. Martin Company to build the Titan I, the nation’s first two-stage ICBM. Designed to be based in underground silos, fifty-four Titan I’s were deployed, followed by fifty-four improved Titan II’s. The first Titan II ICBMs were activated in 1962, and modified Titan II’s were selected to launch NASA’s Gemini spacecraft into orbit during the mid-1960s.
“Man-rating” the Titan II ICBM, however, was not straightforward. NASA’s Robert Gilruth demanded several modifications to make the Titan II acceptable for human spaceflight:
• Structural modifications for attaching the spacecraft to the launch vehicle;
• Three-axis attitude control, redundant autopilot, and electrical power system;
• Rechargeable space-system batteries in the electrical system;
• Installation of a malfunction detection system (MDS);
• Enhanced propulsion management to solve performance reliability and longitudinal oscillation or “POGO” problems and combustion instability problems.
The most serious of these challenges with the Titan II was its longitudinal oscillation, called the POGO effect because it resembled the movements of a child on a pogo stick. Overcoming this problem required engineering imagination and long hours of overtime to stabilize fuel flow and maintain vehicle control. The net result of this effort was an improved Titan II engine system that was “man-rated.”
The contrasting approaches of the Soviet Union and the United States to launch technology both were effective. The U.S. approach required more resources, while the Soviet effort built systematically on previous success. The Americans were able to make greater adjustments to their program because of the range of technologies available to them. The Soviets were hamstrung as time passed, because they could do only certain things and not others.
Few understood the limitations of the Soviet capability at the time. In a closed society with successes announced only after the fact, the failures were not usually known to those outside the Soviet leadership. American successes and failures as well became immediately apparent to the world. The one virtue of the Soviets’ R-7 rocket also betrayed a weakness of the program overall. The R-7 was built to launch quite large payloads—nuclear warheads—against the United States. Since the USSR lacked the miniaturization capability of the United States, it could not shrink the size and weight of those warheads; accordingly, its rocket had to be larger. That gave the USSR an advantage early on by enabling Korolev to launch the first satellites and humans into space. American launchers initially could not propel as heavy a payload into orbit, but they became more robust over time.
Neither nation at the beginning of the space race had a rocket capable of sending humans to the Moon. Both would have t
o develop this technology. The American Saturn V, overseen by von Braun and his rocket team, took Americans to the Moon in the latter 1960s and early 1970s. The comparable Soviet N1 rocket was also built but never successfully flew. When Korolev died on January 14, 1966, apparently as a result of complications from a botched hemorrhoid operation, he left a massive hole in the Soviet space program. Competing factions of engineers vied for its control. Korolev’s longtime rival, rocket engine designer Valentin Glushko, asserted authority. But no one had the same grasp of technical details of the program’s various elements that Korolev had demonstrated, much less the gravitas to unify the program and hold it together. Difficulties dogged the N1 rocket, and after four test launch failures, its development was halted in 1975, more than five years after the Americans reached the Moon.
A Spacecraft Built for Two (or Three): Voskhod and Soyuz
After the success of the early Vostok flights in 1961–1963, Sergei Korolev’s design bureau developed the Voskhod spacecraft as a larger, more capable capsule for either two or three cosmonauts. Scaled up from Vostok, the spherical capsule contained the cosmonauts and instruments, and a conical equipment module held engine and propellant. Because of its weight, Korolev used an enhanced R-7 launch vehicle, which later became the basis of the Soyuz booster. Voskhod would later be superseded in 1967 by Soyuz, which with updates and modifications is still used by Russia.
The Soviet Union intended the Voskhod program to explore how the human body reacted to space, but its first two flights satisfied Nikita Khrushchev’s thirst for space spectaculars. Voskhod 1, October 12–13, 1964, flew three cosmonauts, and Voskhod 2, March 18–19, 1965, achieved the first extravehicular activity (EVA), or “spacewalk.” After Khrushchev was deposed in October 1964, new USSR leadership shifted away from spaceflights aimed at gaining world prestige, allowed Korolev to cancel the Voskhod program, and put more emphasis on a lunar-landing program.
Voskhod proved, at best, an unimpressive spacecraft, and Korolev chomped at the bit to replace it with something more robust. His lieutenants in OKB-1 worked on a more capable spacecraft named Object 7K or Soyuz (Russian for “union”), initiated in 1962, not long after the U.S. decision to land on the Moon by the end of the decade. Korolev pressed his engineers to build a spacecraft that could send two cosmonauts on a circumlunar flight (Box 3). This proved impractical with the Soyuz capsule, and in 1965 Korolev backtracked to a more modest goal, emphasizing Earth orbital missions of a type and complexity not yet demonstrated by the Americans.
By the fall of 1966 Soyuz was ready for test flights, although Korolev, who had died that January, was not there to see it. The spacecraft that emerged consisted of three modules that weighed about 7.25 tons. The first module contained instruments and service components, as well as electrical and propulsion systems. A habitation module provided accommodation for the crew during its mission, and a small aerodynamic reentry module returned the crew to Earth.
Soyuz made its first flight with a cosmonaut on April 23, 1967; Vladimir Komarov’s Soyuz 1 was intended to rendezvous with a three-cosmonaut Soyuz 2, but the mission ran into all manner of problems—not only did Soyuz 1’s solar panels fail to extend, causing intermittent electrical outages, but attitude and stability systems also proved disastrously inadequate—and Komarov had to return to Earth. During reentry Soyuz 1’s primary and reserve parachutes also failed, causing a crash that killed Komarov on impact, the first Soviet fatality directly related to space exploration and the first inflight death during spaceflight. As his capsule plunged through the atmosphere, Komarov could be heard through the radio say, “Heat is rising in the capsule.” He also pronounced himself “killed” as he lunged earthward.
BOX 3: VOSKHOD SPECIFICATIONS
Spacecraft type
Vostok-3KV
Vostok-3KD
Crew capacity
2
Regime
Low Earth
Number Built
5+
Launched
5
Retired
5
First launch
1964
Last launch
1965
Crew size
3 (without space suits)
Service Life
14 days
Overall length
5.0 m (16 feet)
Maximum diameter
2.4 m (8 feet)
Total mass
5,682 kg (6.2 tons)
After Komarov’s death Soviet human space efforts went into hiatus for more than a year and a half. The accident quashed a desire to undertake a space spectacular to commemorate the fiftieth anniversary of the Bolshevik Revolution of October 1917. Not until October 1968 did Soyuz flights resume, with a cosmonaut on Soyuz 3 trying unsuccessfully to dock with an automated Soyuz 2. Only in January 1969 did cosmonauts actually perform a successful mission, with cosmonauts on Soyuz 4 and Soyuz 5 docking and spacewalking between the two spacecraft. Thereafter, Soyuz assumed primary operational status for cosmonauts to the present. It has become one of the most successful human spacecraft ever built.
The Vostok, Voskhod, and Soyuz spacecraft provided the technology for the human component of the Soviet space program throughout the 1960s. Many other less-well-known spacecraft were attempted by the Soviets, but none reached the point where cosmonauts flew on them. One of these was called Zond, a robotic spacecraft that some believed could be used to reach the Moon. Zond 5 was launched on September 15, 1968, and took photographs of both Earth and the Moon. Although it flew without cosmonauts aboard, it was capable of carrying them. An attitude control failure put the spacecraft into a ballistic return that would have killed any cosmonauts aboard, but NASA officials wondered whether the Soviets were planning to beat the United States to a circumlunar flight. On November 11, the Soviet Union launched Zond 6, and it also successfully circumnavigated the Moon before returning to Earth. This time the reentry went well, but a gasket failed, and the spacecraft depressurized during descent in Kazakhstan. Even so, NASA leaders became convinced that the next Zond spacecraft might carry cosmonauts on a circumlunar flight. They greenlighted their own Apollo circumlunar mission, Apollo 8, which flew in December 1968.
Gemini: The Twins
Meantime, the Americans developed the two-astronaut Gemini capsule, which first flew with astronauts in 1965 and 1966, to learn how to (1) maneuver, rendezvous, and dock with another spacecraft; (2) work outside a spacecraft; and (3) collect physiological data about long-duration spaceflight. To gain experience in these areas before Apollo could be readied for flight, NASA devised Project Gemini. Hatched in the fall of 1961 by engineers at Robert Gilruth’s Space Task Group in cooperation with McDonnell Aircraft Corporation technicians, builders of the Mercury spacecraft, Gemini started as a larger Mercury Mark II capsule but soon metamorphosed. It could accommodate two astronauts for extended flights of more than two weeks. The Gemini spacecraft pioneered the use of fuel cells instead of batteries to power the ship, something that would be incorporated into all American human spacecraft thereafter, and it incorporated a series of other modifications to hardware. But problems with the program abounded from the start. The fuel cells that were used to power the spacecraft during flight leaked and had to be redesigned, and the Agena upper stage used for rendezvous and docking required reconfiguration, occasioning costly delays.
One of the objectives for Gemini was to demonstrate a controlled reentry to a preselected landing site. Its designers also toyed with the possibility of using a paraglider being developed at Langley Research Center for “dry” landings instead of a “splashdown” in water and recovery by the navy. This controlled descent and landing was to be accomplished by deploying an inflatable paraglider wing. First NASA built and tested the Paresev, a single-seat, rigid-strut parasail, designed much like a huge hang glider, to test the possibility of a runway landing. The space agency then contracted with North American Aviation (NAA) to undertake a design, development, and test program for a
scaled-up spacecraft version of the concept. A full-scale, two-pilot test tow vehicle (TTV) was also built to test the concept and train Gemini astronauts for flight. The TTV tested maneuvering, control, and landing techniques. A helicopter released the TTV, with its wings deployed, over the dry lake-bed at Edwards Air Force Base, California, where it safely landed. Scale models of the capsules were released at higher altitudes and faster speeds in order to duplicate reentry conditions.
In operation, the spacecraft would fall through the atmosphere back to Earth when a carefully designed and packed paraglider stowed in the spacecraft deployed, beginning after high-temperature reentry and at subsonic speed, at about 50,000 feet; by 20,000 feet the descending spacecraft would take on the characteristics of a hang glider, and the astronauts would bring the craft to a controlled landing on either water or land. Once the wing was deployed, according to a 1963 study of the project, “the pilot directs the vehicle toward a predetermined landing spot by means of manual control in pitch and roll. The pilot executes a flare maneuver at an altitude of some 100 feet above the ground, and the spacecraft lands at a low sink rate.” Skids from the spacecraft would serve as landing legs for the crew returning from space.
Reaching for the Moon Page 12