The Big Picture

Home > Other > The Big Picture > Page 28
The Big Picture Page 28

by Carroll, Sean M.


  34

  leaping from one allowed orbit to another, emitting a packet of light to

  S35

  N36

  161

  Big Picture - UK final proofs.indd 161

  20/07/2016 10:02:44

  T H E B IG PIC T U R E

  01

  make up the difference in energy between them. The electron is doing

  02

  “quantum jumps.”

  03

  •

  04

  05

  Okay. Electrons don’t orbit atomic nuclei with any energy they like, as clas-

  06

  sical mechanics would have it. For some reason, they stick to certain al-

  07

  lowed orbits, with fixed energies. That seems to be a fact of enormous

  08

  significance, apparently incompatible with the Newtonian worldview that

  09

  had been utterly entrenched in the structure of physics. But the data should

  10

  always overrule our expectations; if certain fixed electron orbits are what

  11

  we have to imagine in order to explain the stability of tables and other ob-

  12

  jects made of atoms, let’s go with it.

  13

  The next question is: What makes an electron skip from one allowed

  14

  orbit to another? When does it happen? How does it know that it’s time?

  15

  Does the state of the electron contain information other than simply what

  16

  orbit it’s in?

  17

  It took quite a bit of genius and hard work to figure out the answers to

  18

  these questions. Physicists were forced to throw out what we mean by the

  19

  “state” of a physical system— the complete description of its current

  20

  situation— and replace it with something utterly different. What is worse,

  21

  we had to reinvent an idea we thought was pretty straightforward: the con-

  22

  cept of a measurement or observation.

  23

  We all think we know what those terms mean, but in classical mechan-

  24

  ics there’s nothing all that special about them. We can measure anything

  25

  we want about the system, as accurately as we would like, at least in prin-

  26

  ciple. Not so in quantum mechanics. First off, there are only certain things

  27

  we can measure at any one experiment. We can measure the location of a

  28

  particle, for example, or we can measure its velocity; but we can’t measure

  29

  both at the same time. And when we do make those measurements, only

  30

  certain results are allowed, depending on the physical circumstances. If we

  31

  measure the location of an electron, for example, it could be anywhere; but

  32

  if we measure its energy when it is orbiting inside an atom, only certain

  33

  discrete values will ever be obtained. (That’s where the word “quantum”

  34

  comes from, since in the early days of the field, physicists were extremely

  35S

  interested in how electrons behaved in atoms; but not all observables have

  36N

  discrete possible outcomes, so the name is something of a misnomer.)

  162

  Big Picture - UK final proofs.indd 162

  20/07/2016 10:02:44

  t h E Q uA n t u M R E A l M

  In classical mechanics, if you know the state of the system, you can pre-

  01

  dict with certainty what any measurement outcome will be. In quantum

  02

  mechanics, the state of a system is a superposition of all the possible mea-

  03

  surement outcomes, known as the “wave function” of the system. The wave

  04

  function is a combination of every result you could get by doing an observa-

  05

  tion, with different weights for each possibility. The state of an electron in

  06

  an atom, for example, will be a superposition of all the allowed orbits with

  07

  fixed energies. The superposition representing a given quantum state might

  08

  be heavily concentrated on one specific outcome— the electron might be

  09

  almost perfectly localized in an orbit with some particular energy— but

  10

  in principle every possible measurement outcome can be part of the quan-

  11

  tum state.

  12

  Quantum mechanics is a profound change from classical mechanics,

  13

  whereby the outcomes of experiments are not perfectly predictable, even if

  14

  we know the state exactly. Quantum mechanics tells us the probability that,

  15

  upon observing a quantum system with a specified wave function, we will

  16

  see any particular outcome. We don’t lack perfect predictability because we

  17

  have incomplete information about the system; it’s just the best quantum

  18

  mechanics allows us to do.

  19

  This quantum probability is very different from ordinary classical un-

  20

  certainty. Think once again of playing poker. At the end of a certain hand,

  21

  your opponent makes a big bet, and you need to decide whether your hand

  22

  can beat theirs. You don’t know what their hand is, but you know what the

  23

  possibilities are: nothing, a pair, three of a kind, and so forth. Given their

  24

  behavior so far in the hand, and the odds that they received certain cards to

  25

  start, you can be a good Bayesian and assign different probabilities to the

  26

  various hands they could have. Quantum states sound kind of like that, but

  27

  they are crucially different. In the (classical) game of poker, you don’t know

  28

  what your opponent has, but they have something definite. When we say

  29

  that a quantum state is a superposition, we don’t mean “it could be any one

  30

  of various possibilities, we’re not sure which.” We mean “it is a weighted

  31

  combination of all those possibilities at the same time.” If you could some-

  32

  how play “quantum poker,” your opponent would really have some combi-

  33

  nation of each of the possible hands all at once, and their hand would

  34

  become one specific alternative only once they turned over the cards for you

  S35

  to look at them.

  N36

  163

  Big Picture - UK final proofs.indd 163

  20/07/2016 10:02:44

  T H

  T E

  H B

  E IG

  B I P

  G IC

  P I CTT U

  U R

  R E

  E

  01

  If

  I it

  f i al

  t a l lma

  l m k

  a eks

  e yo

  s y u

  o r

  u br

  r b arian

  i hu


  n h ruTtrH, tEy o

  , yB u

  oI ’r

  uG e

  rP nIo

  e nC t

  oT a

  U l

  t aRoEn

  o e

  n . eQu

  . Q a

  u n

  a tnutm

  u me

  m m ch

  e a

  ch n

  a incsc s

  02

  to

  t o

  o k a l

  o

  o

  k a l n

  o g t

  n i

  g tm

  i e t

  m o b

  e t e p

  o b u

  e p t t

  u o

  t t g

  o egtehtehre, a

  r n

  , a d w

  n e

  d w ’ree s

  r t

  e s itlil a

  l r

  l a gru

  g iunig a

  n b

  g a o

  b u

  o t w

  u h

  t w a

  h t i

  a t

  t i t

  0301

  alal m

  l e

  l m aeIn

  a sn

  f i.st all makes your brain hurt, you’re not alone. Quantum mechanics

  0402

  took a long time to be put together, and we’re still arguing about what it

  •[

  0503

  all means.

  0604

  Co

  C n

  o snisdedr a b

  e

  i

  r a blililairad b

  r a

  d b lal o

  l n a t

  l o

  a

  n a t balbe. O

  e r

  . O dridnia

  n rairliy, y

  y o

  , y u m

  o

  i

  u mgih

  g t t

  h h

  t t ihnik t

  n h

  k t ehree i

  r s

  e i s

  0705

  so

  s m

  o e

  m tehtihnig ca

  n

  l

  g ca led “

  e t

  d “ hte l

  h o

  e l ca

  o t

  ca iton o

  o f t

  n o h

  f t e b

  h a

  e b lal

  [ .l” In q

  ” I u

  n q aun

  a tnutm m

  u

  e

  m m ch

  e a

  ch n

  a incsc, t

  s h

  , t ehreer’s

  e

  0806

  no

  n su

  o sC ch

  uon tsih

  ch tdihni

  e g

  n . gW

  r a bi e

  . Wllreie

  ra yro

  e y u

  o

  d b tao

  u tl o

  l ob

  o o sbesrevr

  n a t e

  va tblh

  e tee

  h ba

  e b

  . Orlal l

  d in

  l inaorr

  n oi drled

  y r

  e, yto

  r to de

  o d te

  u m et

  i re

  g m

  rh i

  mni

  t t e

  nhi it

  e in s tlo

  s l

  k t ca

  ohe -

  ca‑

  re is

  0907

  titon

  os , y

  no o

  , y

  m u w

  oethio

  u w u

  o

  n lud i

  g ca n

  d ill d

  ne ede

  d “d

  et se

  d h s e

  e l i

  e ot l

  i o

  t l

  cat ca

  oio t

  ca etd i

  e

  n o n o

  d i

  f th n

  n o e p

  n

  e balll

  e p.aca

  ” Ie o

  c r a

  e o

  n qu n

  r aa o

  nnttoht

  u e

  h re. B

  r

  m m u

  . Be t w

  ucha h

  t wn ehicn y

  es, to

  n y u

  o

  here’s

  10

  10 08

  arae n

  r n o

  e n t l

  o

  o s o

  t l

  u o

  o k

  o

  ch tikn

  ihig

  n , t

  gng h

  , t e b

  h

  . We a

  e br lal h

  l

  e y a

  l h

  o s n

  au t o l

  s no o o

  o lb ca

  ose t

  car itvon

  o

  e t; i

  nh t h

  ; ie b a

  t h s a w

  all i a

  s a w

  n o v

  ar e f

  vde u

  e f n

  u

  r t c

  n tc

  o dito

  etn

  oe , w

  nrmh

  , wi ihnch i

  e it s a

  ch is loca‑

  11 09

  su

  s p

  u eptirepr

  o o

  pn sois

  , y toiton

  o

  u w of

  n oulev

  f e ev

  d i reny

  rd p

  eeo

  y p so

  d sis e bi e lb ie l

  t l o

  e l coac

  ca taiteon

  o

  d i it

  n i c

  n o o

  t cn u

  o lu

  e pd ab

  c e

  d b . e

  e oIt

  . I ’s

  t

  r ana

  o b

  t i

  s a bht elri

  t l kie

  k

  . Bu a li

  e a l

  t w tet

  h re

  e arla

  n you

  12 10

  wa

  w vaev

  ar, s

  e i

  , st

  e n toitn

  it lg o

  noo n t

  g oki o

  n t

  ngp o

  o, t f t

  p oh h

  f t

  e be t

  hal a

  e t ba

  l h lbae; w

  es n h

  ; w

  o le

  horee t

  rcath

  e ti e w

  hon a

  e w

  ; i v

  a e i

  v

  t ha s h

  e i i

  s hgi

  s a wh

  ga ehvsets, t

  t

  e fu h

  , tnehcreteri’s t
r />   eon h

  s t e l

  h

  , wha

  e li ragr-g‑

  ch is a

  13 11

  eset ch

  s su a

  t chp n

  ae cnre o

  cposf s

  e oitie

  f soeienig t

  n

  n o h

  g t

  f eve b

  her a

  e b lal w

  l

  y pos e

  l wsiree y

  rbl o

  e y

  e l u t

  ooc o l

  u tati o

  o lo o

  o k

  o

  n i . I

  kt cf y

  . Iouo

  f yl u k

  od b n

  u ke enw w

  e

  . It’ h

  w w a

  h

  s a b t t

  ai h

  t t

  t li a

  hkt w

  a a

  t w

  e a l v

  ai e

  vteral

  1412

  fu

  f n

  u cnwtcitaovn w

  oe, si a

  n wtts a

  ain h

  s a eh

  g oa

  e d o

  an to f t

  d o i

  f t

  p om

  if te

  m , y

  eh o

  , y

  e t u c

  oabl o

  u ce u

  o lu

  ; wd p

  herr

  d p erde

  e t id

  h ct t

  c

  e w h

  t ta e p

  hve i r

  e p orb

  o

  s hi a

  bgbahiblieilsty i

  t, t t w

  y iher o

  t we’u

  o lu

  s td b

  h e

  d b

  e larg‑

  15 13

  in o

  i en

  n os e l

  n o

  e l

  t chca

  oa t

  ca

  n itcon o

  on

  e o r a

  or

  f see n

  ai y

  nn o

  g tt

  y o ht

  h e

  h re. r

  e baFlo

  . F r b

  o

  l we i

  r brgi, g

  e y r, e

  o a

  re la-

  u t w

  ‑ o

  w

  o l r

  oo lrod o

  d

  k. Ib

  o jbe

  f y c

  eotcs l

  tu ki

  s l ki

  n e b

  ke

  e ibli

  w wlilhairad b

  rt th a

  d b lalsl,s

  t w ave

  1614

  th

  t e w

  hfu a

  e wnvace f

  vti u

  e fo n

  u c

  n

  n wtcitaon i

  o

  s ah s t

  n iea y

  s t p

  y

  d oipca

  c

  f t laily v

  me e

  y v re

  , y y s

  ro t

  y s rt

  u c o

  ro n

  oulg

  n lgy p

  d pr e

  y pe ae

  dik

  acekd a

  e

  t th r

  d a oru

  o

  e pr n

  uo d o

  nbabn

  d oile p

  nit a

  e p

  y iratritc

  t w u

  co luuara r

  d be

  1715

  po

  p soistito

 

‹ Prev