Films from the Future
Page 15
In 2011, author John Green and his brother Hank launched the YouTube channels Crash Course and SciShow. Even though the Green brothers were not educators in the formal sense, they set out to make rigorous, relevant, and engaging educational content available to anyone with YouTube access, and they succeeded phenomenally. As of this writing, between them, the two channels have attracted nearly one and three quarter billion views. But it’s not just the views that are important here. The content on these channels is well-researched and well-presented. It is, whichever way you look at it, great educational material, and it’s trouncing what’s being offered by some more formal educators.
Crash Course and SciShow are part of a growing trend in casual learning content on YouTube that is reaching billions of people, and is transforming how and where people develop the knowledge and skills they need. And yet, formal educational establishments and leading subject experts are largely absent from this trend. This, to me, is a glaring missed opportunity, and one that my colleagues in universities around the world need to respond to. As the pace of innovation continues to increase, people are going to increasingly turn to platforms like YouTube to learn what they need to in order to keep up. And while content providers like the Green brothers and their teams are doing a fantastic job, if even a small number of savvy academic experts followed their lead, we would have the opportunity to massively expand the quality, quantity, and accessibility of learning material on video-sharing platforms. If experts and educators can be galvanized to embrace this new form of user-driven online learning, we could be on the cusp of an unprecedented democratization of education.
Such radical access to knowledge and learning could help reduce social inequity in the future, as it enables anyone to acquire the skills they need to succeed. Done right, knowledge will no longer be the domain of those rich enough to afford it, or privileged enough to use it, but will be there for anyone who wants it.
Of course, education alone is not the answer to social inequity, and avoiding a future that mirrors that depicted in Elysium will also require a deep commitment to developing, using, and governing new technologies responsibly and ethically. Yet meaningful access to knowledge and understanding for all is part of the bedrock on which social equity is built, and we ignore it at our peril—especially, as we’ll see in the next movie, Ghost in the Shell, when we begin to create technologies that push conventional understanding to the limit.
Chapter Seven
GHOST IN THE SHELL: BEING HUMAN IN AN AUGMENTED FUTURE
“As an autonomous life-form,
I request political asylum.”
—Puppet Master
Through a Glass Darkly
On June 4, 2016, Elon Musk tweeted: “Creating a neural lace is the thing that really matters for humanity to achieve symbiosis with machines.”82
This might just have been a bit of entrepreneurial frippery, inspired by the science fiction writer Iain M. Banks, who wrote extensively about “neural lace” technology in his Culture novels. But Musk, it seems, was serious, and in 2017 he launched a new company to develop ultra-high-speed speed brain-machine interfaces.83
Musk’s company, Neuralink, set out to disrupt conventional thinking and transform what is possible with human-machine interfaces, starting with a talent-recruitment campaign that boldly stated, “No neuroscience experience is required.”84 Admittedly, it’s a little scary to think that a bunch of computer engineers and information technology specialists could be developing advanced systems to augment the human brain. But it’s a sign of the interesting times we live in that, as entrepreneurs and technologists become ever more focused on fixing what they see as the limitations of our biological selves, the boundaries between biology, machines, and cyberspace are becoming increasingly blurred.
The movie Ghost in the Shell is set in a future where technologies like those Musk and others are working on are increasingly finding their way into society, and into people. It was released in 1995, and builds on a Japanese manga series that dates back to the 1980s. Yet, despite its age, it’s remarkably prescient in how it uses increasing integration between people and machines to explore what it means to be “human” in an age of technological augmentation. Not surprisingly, some of the tech looks a little outdated now: In 1995, the internet was just finding its global feet, Wi-Fi had yet to become ubiquitous, cloud computing (never mind fog computing85) wasn’t a thing, and Google hadn’t even been formed. Yet, as advances in human-machine interfaces continue to barrel forward at lightning speed, the issues Ghost explores are perhaps more relevant now than ever.
In Ghost in the Shell, cybernetic and machine-based body augmentations are commonplace. They give their users machine-like powers, and the ability to connect with a vast digital web of information, while brain implants allow people to communicate mind-to-mind, and mind-to computer. This fusion of human biology with machines and cybernetic systems makes coding experts extremely valuable, and hackers extremely powerful. And one of the emergent consequences of this intimately interconnected world is that hackers have found ways to implant false memories in people’s minds, altering who they think they are.
This possibility for mind and memory manipulation gets to the heart of Ghost. Beneath the movie’s visually stunning graphics and compelling sci-fi storyline (as you may gather, I really like this movie), Ghost in the Shell challenges us to think about what it means to be alive, to have value, and to have a sense of self, purpose, and destiny. On the release of the Ghost in the Shell remake in 2017 (a poor “ghost” of a movie in comparison), commentator Emily Yoshida described the original as a “meditation on consciousness and the philosophy of the self.”86 And she’s spot on. Just as Never Let Me Go in chapter three forces viewers to think about what it means to be human, Ghost takes us on a journey of contemplation around what it means to be a conscious and self-aware entity, in a future where the biological origins of humanity have increasingly less meaning.
At the center of Ghost is Major Motoko Kusanagi (voiced by Atsuko Tanaka). Motoko is part of an elite team in “Section 9”—a shady government department that operates at the edge of the law to keep the wheels of society turning smoothly. Major Kusanagi is a cyborg. Most of her body has been replaced by manufactured parts, including much of her brain (although she retains a small part of her original biological brain). She is strong, fast, cyber-connected, and with the use of advanced “thermoptic technology” built into her artificial skin, she is able to blend into her surroundings and effectively disappear. She is also very human in her hopes, fears, feelings, and relationships.
At the beginning of the movie, we learn that an aide to a senior diplomat has been “ghost-hacked.” Her neural implant has been used to hack into her mind, with the intent of using her to interfere with a sensitive international negotiation. The hacking is traced to a garbage collector who, we learn, believes (incorrectly) that he is hacking into his wife’s “ghost” to find out why their relationship is on the rocks. And he in turn is being handled by a figure who believes (wrongly) he is an agent working a foreign government.
We quickly gather that the neural implants most people have allow smart hackers to alter their sense of their own identity, or their “ghost.” They can, in effect, rewrite who someone thinks they are. And so it turns out that the garbage collector has no wife or family, but lives alone with his dog. And the foreign agent has no idea of who he really is. Rather, each has been manipulated by a shady master-hacker called the Puppet Master.
This plays deeply into Major Kusanagi’s personal angst. She’s already grappling with her own self-identity, and this ability for someone to alter another person’s sense of self worries her. As a result, she is deeply concerned about whether she’s who she thinks she is, and if her sense of self is simply an illusion created by someone else. This all adds to her uncertainty around what gives someone like herself legitimacy, or worth, and what—if anything—makes her more than just a machine?
These ideas echo many of those
touched on in movies like Never Let Me Go (chapter three), Minority Report (chapter four) and Ex Machina (chapter eight). But in Ghost, they are front and center of this meditation that’s masquerading as an anime movie.
In the movie, we repeatedly find Motoko deep in contemplation, exploring her own mortality, and wrestling with who she is. There’s one beautiful transition scene, for instance, where through a masterful combination of visuals and music, we’re invited to share in Motoko’s introspection. Motoko knows that she is largely made up of manufactured parts, and that she may not be who she thinks she is. But how does she make sense of this, and come to terms with it?
In the movie, there are two parallel narratives that weave together through this introspection. Early on, we learn that a new recruit to Section 9—Togusa (Kôichi Yamadera)—is the only member of the team without implants. When he asks Major Kusanagi why he was selected, she points out that overspecialization leads to death, and that diversity of ability and perspective is essential for life. This theme of diversity recurs at the movie’s denouement. But it also underlies a meditation that threads through the movie on the importance of embracing difference.
The second narrative is subtler, and it revolves around feelings of friendship and love between Motoko and her colleague Batou (voiced by Akio Ôtsuka). Despite Motoko’s crisis of self-identity, it’s clear through the movie that Batou cares deeply for her. This is a relationship that transcends who made their bodies, and how “biological” they are; it invites us as viewers to think about what the basis of this friendship is. The answer, it emerges, lies in the “ghosts” that define both Motoko and Batou, and is not constrained by physical form. There’s an essence within each of these characters that transcends their physical bodies, and leads to a strong bond between them. Yet it also extends to their physical interactions in unexpected ways. In the movie, Batou is touchingly sensitive to protecting Motoko’s dignity. This being Japanese science fiction anime, there’s a fair amount of female nakedness, aided by Major Kusanagi’s need to remove her clothes to take advantage of her thermoptic skin. Yet we repeatedly find Batou averting his eyes from Kusanagi’s naked body, and covering her nakedness where he can. There is a sensitivity to his body language here that makes little sense in the context of Motoko being a machine, but much sense in terms of her being someone he has deep regard for. This regard threads through the movie to its end, where Batou saves Motoko’s life. It’s a relationship that’s based on respect, acceptance, and empowerment, even as Motoko is transformed into something other than what she started as.
Returning to the plot, following the attempted hack of the diplomat’s aide, the hunt is on for the Puppet Master. Another government agency—Section 6—sets the cyber-equivalent of a honey trap for the Puppet Master by creating a cyber-body/brain that he/she will find irresistible to hack and download themselves into. The trap is sprung, but the body containing the Puppet Master escapes the facility it was being held in. However, its freedom is short-lived, as it’s hit by a truck, and the mangled cybernetic body ends up in the hands of Section 9. And this is where we begin to discover that things are not quite as they seem.
It turns out that the Puppet Master (voiced by Iemasa Kayumi) is an algorithm—codenamed project 2501—designed to hack people and cyber-systems and manipulate them. The creators of 2501 thought they had it under control. But the algorithm became self-aware and escaped out into the net. And Section 6 has been trying to capture it ever since.
As 2501 learned more of the world it found itself in, it became aware of its own limitations, and especially its inability to do the two things it deduced were essential to the growth of a species: to reproduce, while adding diversity to the cyber-equivalent of the gene pool, and to die, thus paving the way for new entities to grow, mature, and evolve.
At this point, the movie begins to dive deeply into exploring the meaning of life, and the roles and responsibilities of individuals within a self-aware society. From 2501’s perspective, reproduction through copying itself would be meaningless, a sterile act, and a negation of what it considers to be meaningful. Instead, it begins to explore how it can increase diversity within future generations of the life form it represents, and to make way for these future generations by experiencing death87.
Here, Major Kusanagi becomes central to 2501’s plan. In Kusanagi, 2501 sees an entity that is close enough to himself/herself88 for a bond to be developed, and procreation to occur. And so, to engineer a situation where he/she and Kusanagi can interface, 2501 sets in motion a series of events that lead to her/him being picked up by Section 9.
Once there, 2501 requests political asylum as a life-form. But Section 6 aren’t having any of this; they simply want their algorithm back. And so, Section 6 operatives carry out a raid to regain possession of the cyber-body holding 2501. They succeed in abducting him/her, but not before 2501 has intrigued Motoko enough for her to want find out more. Motoko chases after 2501’s abductors, and ends up in a deserted warehouse, with minimal backup, and an autonomous tank protecting her quarry.
After a firefight where Major Kusanagi is heavily out-gunned (but not outsmarted), and where, in a very in-your-face metaphor, a wall carving of the evolutionary tree of life is shot up, Motoko reaches the tank. In her attempt to disable it and protect 2501, she compromises her cybernetic body, sacrificing her physical self in her quest for enlightenment.
At this point, Batou arrives and saves both Motoko and 2501, but not before their physical bodies have been badly damaged. Thankfully, their minds are still intact, and in the few minutes they have together, 2501 and Motoko connect.
This is where we learn that this union has been 2501’s plan all along—not to hack Motoko, but to engage with her as an equal. 2501 explains his/her fears and aspirations, and presents Motoko with a proposal: that they cybernetically merge, and in the process, create a new, more diverse, and richer entity, while allowing 2501 in his/her current form to die. Motoko agrees, and the merge takes place. Batou escapes with Motoko/2501’s intact head, and finds a replacement cyber body for this new entity.
As the movie closes, the merging of 2501 and Motoko affirms that embracing the future, while letting go of the past, is essential for growth. By letting go of their individual identities and embracing diversity, Motoko and 2501 have, together, formed a more confident and self-assured life-form. And despite the “evolution” of Major Kusanagi, Batou’s respect and regard are not in the slightest diminished as he accepts this transformation within his friend.
The underlying messages here may all sound a little pop psychology-ish. But despite this, Ghost helps peel the layers away from increasing tough questions around who we are and how we interact with others, as emerging technological capabilities take us increasingly beyond the limits of our biological evolution.
Body Hacking
In July 2012, Dr. Steve Mann was allegedly assaulted in a Paris branch of McDonald’s.89 What made this case unusual was that the assault was sparked by a computer vision system physically attached to Mann’s skull—a physical augmentation that others purportedly took exception to.
Mann developed his “EyeTap” in 1999 as a computer-augmented extension of his eye, allowing him to both record what he was seeing and project information directly into his right eye. In many ways, it was a precursor to Google Glass, but with one important difference: the EyeTap was physically attached to his head, and could not be removed without special tools.
In the incident that Mann described on his blog, a McDonald’s employee attempted to physically pull the EyeTap off his head, damaging it in the process, and causing considerable personal distress. While the details of the case remain uncertain, it stands as one of the first documented incidences of possible discrimination against someone with an intentional body augmentation that, because of its nature, led to a perceived threat to someone else; although in this case, whether that perceived threat was to privacy, “normalcy,” or something else, is unclear.
Mann’s us
e of technological augmentation is part of a broader “body hacking” movement—a loose trend where people are experimenting with do-it-yourself body enhancements. Many of these hacks involve individuals embedding magnets in their bodies so they can sense and respond to magnetic fields, or inserting radio frequency identification (RFID) chips under their skin so they can remotely interact with their environment. But in this extension of the maker movement, people are playing with increasingly sophisticated ways to incorporate novel technologies in their bodies, often through unsupervised do-it-yourself surgery.
The ethics of untrained and unsupervised people cutting themselves and others open to insert objects of unknown provenance are interesting to say the least, never mind the safety concerns. However, this movement provides some indications as to where human enhancement may be heading, and some of the bumps in the road that it may encounter on the way. It’s also an early step toward a future that echoes the one we’re introduced to in Ghost in the Shell, where the lines are increasingly blurred between our biological and our technological selves.
To some at least, this is seen as part of our evolutionary development (although it should be said that it’s a stretch to think that using our intellect to merge our bodies with machines is directly equatable to biological natural selection). Body hackers are often enamored with the idea that we can use technology to overcome our biological limitations, and transcend our evolutionary heritage to become something else entirely. To many of them, placing magnets and RFIDs under the skin are baby steps to something much greater: becoming “trans-human.”
In recent years, the transhumanist movement has blossomed. As technological capabilities have continued to grow and converge in areas as diverse as robotics, nanotechnology, AI, neurotechnology, and biotechnology, a growing number of people have become enamored with the ability of technology to transform who we are, and what we can achieve as a result. Prominent transhumanists such as Ray Kurzweil and Nick Bostrom talk about enhancing physical and mental abilities through technology, extending lifespans, interfacing ever more deeply with computers, and one day even leaving our biological bodies altogether. In the 2016 US election, there was even a transhumanist candidate—Zoltan Istvan.90 As I’m writing this, he’s setting his sights on becoming the Governor of California.