Modeling of Atmospheric Chemistry

Home > Other > Modeling of Atmospheric Chemistry > Page 66
Modeling of Atmospheric Chemistry Page 66

by Guy P Brasseur


  Deeter M. N., Emmons L. K., Francis G. L., et al. (2003) Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument, J. Geophys. Res., 108, 4399.

  Errera Q. and Ménard R. (2012) Technical note: Spectral representation of spatial correlations in variational assimilation with grid point models and application to the Belgian Assimilation System for Chemical Observations (BASCOE), Atmos. Chem. Phys., 12, 10015–10031.

  Errera Q., Daerden F., Chabrillat S., et al. (2008) 4D-Var assimilation of MIPAS chemical observations: Ozone and nitrogen dioxide analyses, Atmos. Chem. Phys., 8, 6169–6187.

  Heald C. L., Jacob D. J., Jones D., et al. (2004) Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide, J. Geophys. Res., 109, D23306.

  Henze D. K., Hakami A., and Seinfeld J. H. (2007) Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433.

  Jacob D. J., Crawford J., Kleb M., et al. (2003) The Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results, J. Geophys. Res., 108, 9000.

  Kim P. S., Jacob D. J., Mickley L., et al. (2015) Sensitivity of population smoke exposure to fire locations in Equatorial Asia, Atmos. Environ., 102, 11–17.

  Kopacz M., Jacob D. J., Henze D., et al. (2009) Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305.

  Miller S. M., Michalak A. M., and Levi P. J. (2014) Atmospheric inverse modeling with known physical bounds: An example for trace gas emissions, Geosci. Mod. Dev., 7, 303–315.

  Rodgers C. D. (2000) Inverse Methods for Atmospheric Sounding, World Sci., Tokyo.

  Rodgers C. D., and Connor B. J. (2003) Intercomparison of remote sounding instruments, J. Geophys. Res., 108, 4116.

  Turner A. J. and Jacob D. J. (2015) Balancing aggregation and smoothing errors in inverse models, Atmos. Chem. Phys., 15, 7039–7048.

  Wecht K. J., Jacob D. J., Frankenberg C., et al. (2014) Mapping of North America methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data, J. Geophys. Res., 119, 7741–7756.

  Zhang L., Jacob D. J., Liu X., et al. (2010) Intercomparison methods for satellite measurements of atmospheric composition: Application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725–4739.

  Zoogman P. W., Jacob D. J., Chance K., et al. (2014) Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations, Atmos. Chem. Phys., 14, 6261–6271.

  A

  Physical Constants and Other Data

  A.1 General and Universal Constants

  Base of natural logarithms 2.71828

  π (Pi) 3.14159

  Boltzmann’s constant 1.38066 × 10–23 J K–1

  Molar gas constant 8.3144 J K–1 mol–1

  Stefan–Boltzmann’s constant 5.67032 × 10–8 W m–2 K–4

  Planck’s constant 6.62618 × 10–34 J s

  Speed of light in vacuum 2.99792 × 108 m s–1

  Gravitational constant 6.67259 × 10–11 m3 s–2 kg–1

  Electron mass 9.1096 × 10–31 kg

  Electron charge 1.6022 × 10–19 C

  Atomic mass unit (amu) 1.66054 × 10–27 kg

  Avogadro number 6.0221 × 1023 mol–1

  A.2 Earth

  Average radius 6.371 × 106 m

  Surface area 5.10 × 1014 m2

  Surface area (continents) 1.49 × 1014 m2

  Surface area (oceans) 3.61 × 1014 m2

  Average height of land 840 m

  Average depth of oceans 3730 m

  Acceleration of gravity (surface) 9.80665 m s–2

  Mass of Earth 5.983 × 1024 kg

  Mass of atmosphere 5.3 × 1018 kg

  Eccentricity of Earth’s orbit 0.016750

  Inclination of rotation axis 23.45° or 0.409 rad

  Mean angular rotation rate 7.292 × 10–5 rad s–1

  Earth orbital period 365.25463 days

  Solar constant 1367 ± 2 W m–2

  A.3 Dry Air

  Average molar mass 28.97 g mol–1

  Specific gas constant 287.05 J K–1 kg–1

  Standard surface pressure 1.01325 × 105 Pa

  Mass density at 0 °C and 101325 Pa 1.293 kg m–3

  Number density at 0 °C and 101325 Pa 2.69 × 1025 m–3

  Molar volume 0 °C and 101325 Pa 22.414 × 10–3 m3 mol–1

  Specific heat at constant pressure (cp) 1004.64 J K–1 kg–1

  Specific heat at constant volume (cv) 717.6 J K–1 kg–1

  Poisson constant (cp/cv) 1.4

  Index of refraction for air 1.000277

  Dry diabatic lapse rate 9.75 K km–1

  Speed of sound for standard conditions 343.15 m s–1

  A.4 Water

  Molecular weight 18.016 g mol–1

  Gas constant for water vapor 461.6 J K–1 kg–1

  Density of pure liquid water at 0 °C 1000 kg m–3

  Density of ice at 0 °C 917 kg m–3

  Density of water vapor at STP (0 °C, 1 atm) 0.803 kg m–3

  Specific heat of water vapor at constant pressure 1952 J K–1 kg–1

  Specific heat of water vapor at constant volume 1463 J K–1 kg–1

  Specific heat of liquid water at 0 °C 4218 J K–1 kg–1

  Specific heat of ice at 0 °C 2106 J K–1 kg–1

  Latent heat of vaporization at 0 °C 2.501 × 106 J kg–1

  Latent heat of vaporization at 100 °C 2.25 × 106 J kg–1

  Latent heat of fusion at 0 °C 3.34 × 105 J kg–1

  Latent heat of sublimation at 0 °C 2.83 × 106 J kg–1

  Index or refraction for liquid water 1.336

  Index of refraction for ice 1.312

  Triple-point temperature of water 273.16 K

  B

  Units, Multiplying Prefixes, and Conversion Factors

  B.1 International System of Units

  Quantity Name of Unit Symbol Definition

  Length Meter m

  Mass Kilogram kg

  Time Second s

  Electrical current Ampere A

  Temperature Kelvin K

  Force Newton N kg m s–2

  Pressure Pascal Pa N m–2

  Energy Joule J kg m2 s–2

  Power Watt W J s–1

  Electrical potential Volt V W A–1

  Electrical charge Coulomb C A s

  Electrical resistance Ohm Ω V A–1

  Electrical capacitance Farad F A s V–1

  Frequency Hertz Hz s–1

  Moles Mole mol

  B.2 Multiplying Prefixes

  Multiple Prefix Symbol Multiple Prefix Symbol

  10–1 Deci d 101 Deca da

  10–2 Centi c 102 Hecto h

  10–3 Milli m 103 Kilo k

  10–6 Micro μ 106 Mega M

  10–9 Nano n 109 Giga G

  10–12 Pico p 1012 Tera T

  10–15 Femto f 1015 Peta P

  10–18 Atto a 1018 Exa E

  Wavelengths are typically expressed in micrometers (μm) or nanometers (nm). Wavenumbers are expressed in inverse centimeters (cm–1). Atmospheric pressure is often expressed in hectopascals (hPa), number densities in molecules per cubic centimeter (cm–3). Molar mixing ratios are given in percent, parts per million (ppm), parts per billion (ppbv), parts per trillion (pptv), or parts per quadrillion (ppqv). Mass mixing ratios are expressed in kilograms per kilogram or grams per kilogram.

  B.3 Conversion Factors

  Area 1 ha = 104 m2

  Volume 1 liter = 10–3 m3

  Velocity 1 m s–1 = 3.6 km h–1 = 2.237 mi h–1

  Force 1N = 105 dyn

  Pressure 1 bar = 105 Pa =103 mb = 750.06 mm Hg

  1 atm = 1.01325 × 105 Pa = 760 Torr

  Energy 1 cal = 4.1855 J

  1 eV = 1.6021 × 10–19 J

  1 J =
1 N m = 107 erg = 0.239 cal

  Power 1 W = 14.3353 cal min–1

  Temperature T(°C) = T(K) – 273.15

  T(°F) = 1.8 T(°C) + 32

  Mixing ratios 1 ppb = 10–3 ppm

  1 ppt = 10–3 ppb = 10–6 ppm

  Logarithms ln x = 2.3026 log10 x

  B.4 Commonly Used Units for Atmospheric Concentrations

  Number density molecules cm–3

  Mass density kg m–3

  Mixing ratio (molar)a ppm ≡ ppmv ≡ μmol mol–1 ≡ 10–6 mol mol–1

  ppb ≡ ppbv ≡ nmol mol–1 ≡ 10–9 mol mol–1

  ppt ≡ pptv ≡ pmol mol–1 ≡ 10–12 mol mol–1

  ppq ≡ ppqv ≡ fmol mol–1 ≡ 10–15 mol mol–1

  Mixing ratio (mass) g g–1 ≡ g per g of air

  g kg–1 ≡ g per kg of air

  Partial pressure Pa, Torr (1 Torr = 133 Pa)

  Column molecules cm–2,

  Dobson Unit (1 DU = 2.69 × 1016 molecules cm–2)b

  a Mixing ratios in the atmospheric chemistry literature denote molar fractions unless otherwise specified. Mol mol–1 is the SI unit but ppm, ppb, etc. are conventionally used. To avoid confusion with mass mixing ratios the conventional units are often written as ppmv, ppbv, etc. where v refers to volume (in an ideal gas such as the atmosphere, the number of moles is proportional to volume)

  b The Dobson Unit was originally introduced and is still mainly used as a measure of the thickness of the ozone layer, with 1 DU corresponding to a 0.01 mm thick layer of pure ozone under standard conditions of temperature and pressure (0 °C, 1 atm).

  C

  International Reference Atmosphere

  Elevation Temperature Pressure Relative

  density Kinematic

  viscosity Thermal

  conductivity Speed of sound

  z

  [m] T

  [K] p

  [Pa]

  ×105 ρ/ρ0 ν

  [m2 s–1]

  ×10–5 κ

  [W m–1 K–1]

  ×10–2 c

  [m s–1]

  –1500 297.9 1.2070 1.1522 1.301 2.611 346.0

  –1000 294.7 1.1393 1.0996 1.352 2.585 344.1

  –500 291.4 1.0748 1.0489 1.405 2.560 342.2

  0 288.15 1.01325 1.0000 1.461 2.534 340.3

  500 284.9 0.9546 0.9529 1.520 2.509 338.4

  1000 281.7 0.8988 0.9075 1.581 2.483 336.4

  1500 278.4 0.8456 0.8638 1.646 2.457 334.5

  2000 275.2 0.7950 0.8217 1.715 2.431 332.5

  2500 271.9 0.7469 0.7812 1.787 2.405 330.6

  3000 268.7 0.7012 0.7423 1.863 2.379 328.6

  3500 265.4 0.6578 0.7048 1.943 2.353 326.6

  4000 262.2 0.6166 0.6689 2.028 2.327 324.6

  4500 258.9 0.5775 0.6343 2.117 2.301 322.6

  5000 255.7 0.5405 0.6012 2.211 2.275 320.5

  5500 252.4 0.5054 0.5694 2.311 2.248 318.5

  6000 249.2 0.4722 0.5389 2.416 2.222 316.5

  6500 245.9 0.4408 0.5096 2.528 2.195 314.4

  7000 242.7 0.4111 0.4817 2.646 2.169 312.3

  7500 239.5 0.3830 0.4549 2.771 2.142 310.2

  8000 236.2 0.3565 0.4292 2.904 2.115 308.1

  8500 233.0 0.3315 0.4047 3.046 2.088 306.0

  9000 229.7 0.3080 0.3813 3.196 2.061 303.8

  9500 226.5 0.2858 0.3589 3.355 2.034 301.7

  10 000 223.3 0.2650 0.3376 3.525 2.007 299.8

  10 500 220.0 0.2454 0.3172 3.706 1.980 297.4

  11 000 216.8 0.2270 0.2978 3.899 1.953 295.2

  11 500 216.7 0.2098 0.2755 4.213 1.952 295.1

  12 000 216.7 0.1940 0.2546 4.557 1.952 295.1

  12 500 216.7 0.1793 0.2354 4.930 1.952 295.1

  13 000 216.7 0.1658 0.2176 5.333 1.952 295.1

  13 500 216.7 0.1533 0.2012 5.768 1.952 295.1

  14 000 216.7 0.1417 0.1860 6.239 1.952 295.1

  14 500 216.7 0.1310 0.1720 6.749 1.952 295.1

  15 000 216.7 0.1211 0.1590 7.300 1.952 295.1

  15 500 216.7 0.1120 0.1470 7.895 1.952 295.1

  16 000 216.7 0.1035 0.1359 8.540 1.952 295.1

  16 500 216.7 0.09572 0.1256 9.237 1.952 295.1

  17 000 216.7 0.08850 0.1162 9.990 1.952 295.1

  17 500 216.7 0.08182 0.1074 10.805 1.952 295.1

  18 000 216.7 0.07565 0.09930 11.686 1.952 295.1

  18 500 216.7 0.06995 0.09182 12.639 1.952 295.1

  19 000 216.7 0.06467 0.08489 13.670 1.952 295.1

  19 500 216.7 0.05980 0.07850 14.784 1.952 295.1

  20 000 216.7 0.05529 0.07258 15.989 1.952 295.1

  22 000 218.6 0.04047 0.05266 22.201 1.968 296.4

  24 000 220.6 0.02972 0.03832 30.743 1.985 297.7

  26 000 222.5 0.02188 0.02797 42.439 2.001 299.1

  28 000 224.5 0.01616 0.02047 58.405 2.018 300.4

  30 000 226.5 0.01197 0.01503 80.134 2.034 301.7

  D

  Chemical Mechanism

  This appendix lists important chemical and photolysis reactions occurring in the troposphere and stratosphere, including rate constants and typical photolysis frequencies. It is based on a mechanism described by Emmons et al. (2010) and Lamarque et al. (2012). Many rate constants in the mechanism are simplified and uncertain. More comprehensive and detailed information with references can be found in various compilations, including the regularly updated NASA Jet Propulsion Laboratory (JPL) Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies and the International Union of Pure and Applied Chemistry (IUPAC) Evaluated Kinetic Data for Atmospheric Chemistry. See also The Atmospheric Chemist’s Companion by P. Warneck and J. Williams (Springer, 2012). Chemical mechanisms used in models often vary in their lumping of larger organic species and their oxidation products. The present mechanism lumps alkanes and alkenes with four or more carbon atoms, lumps aromatic hydrocarbons as toluene, and also includes isoprene and a lumped terpene (α-pinene). The chemical reactivity of the lumped species is chosen to approximately represent the average reactivity of the different individual hydrocarbons that are accounted for by the lumped species. The mechanism symbols identify individual species in the computer code for the mechanism and are sometimes used in atmospheric chemistry jargon (PAN, for example) but have otherwise no meaning. The “common names” may depart from IUPAC nomenclature but represent standard usage in the atmospheric chemistry literature.

  D.1 Chemical Species and Definitions of Symbols

  D.1.1 Inorganic Gas-Phase Species

  Chemical formula Common name

  O(3P) Ground state “triplet-P” atomic oxygen

  O(1D) Excited state “singlet-D” atomic oxygen

  O3 Ozone

  N2O Nitrous oxide

  NO Nitric oxide

  NO2 Nitrogen dioxide

  NO3 Nitrate radical

  HONO Nitrous acid

  HNO3 Nitric acid

  HNO4 Pernitric acid

  N2O5 Dinitrogen pentoxide

  H Atomic hydrogen

  H2 Molecular hydrogen

  OH Hydroxyl radical

  HO2 Hydroperoxy radical

  H2O2 Hydrogen peroxide

  CO Carbon monoxide

  SO2 Sulfur dioxide

  NH3 Ammonia

  Cl Chlorine atom

  ClO Chlorine monoxide

  OClO Chlorine dioxide

  Cl2O2 Chlorine monoxide dimer

  Cl2 Molecular chlorine

  HCl Hydrogen chloride

  HOCl Hypochlorous acid

  ClONO2 Chlorine nitrate

  ClNO2 Nitryl chloride

  Br Bromine atom

  BrO Bromine monoxide

  Br2 Molecular bromine

  BrCl Bromine monochloride

  HBr Hydrogen bromide

  HOBr Hypobromous acid

  BrONO2 Bromine nitrate

  D.1.2 Organic Gas-Phase Species

  Mechanism symbol Chemical formula Common name

  C1 species

  CH4 CH4 Methane

  CH3O2 CH3O2 Methylperoxy radical

  CH3OOH
CH3OOH Methylhydroperoxide

  CH2O CH2O Formaldehyde

  CH3OH CH3OH Methanol

  HCOOH HCOOH Formic acid

  C2 species

  C2H4 C2H4 Ethene

  C2H6 C2H6 Ethane

  C2H2 C2H2 Acetylene

  CH3CHO CH3CHO Acetaldehyde

  C2H5OH C2H5OH Ethanol

  EO HOCH2CH2O Hydroxy ethene oxy radical

  EO2 HOCH2CH2O2 Hydroxy ethene peroxy radical

  CH3COOH CH3COOH Acetic acid

  GLYOXAL HCOCHO Glyoxal

  GLYALD HOCH2CHO Glycolaldehyde

  C2H5O2 C2H5O2 Ethylperoxy radical

  C2H5OOH C2H5OOH Ethylhydroperoxide

  CH3CO3 CH3CO3 Peroxyacetyl radical

  CH3COOOH CH3C(O)OOH Peracetic acid

  PAN CH3C(O)OONO2 Peroxyacetyl nitrate

  DMS (CH3)2S Dimethylsulfide

  C3 species

  C3H6 C3H6 Propene

  C3H8 C3H8 Propane

  C3H7O2 C3H7O2 Propylperoxy radical

  C3H7OOH C3H7OOH Propylhydroperoxide

  PO2 e.g., CH3CH(OO)CH2OH Hydroxyl propene peroxy radicals

  POOH e.g., CH3CH(OOH)CH2OH Hydroxyl propene peroxide

  CH3COCH3 CH3COCH3 Acetone

  HYAC CH3COCH2OH Hydroxyacetone

  CH3COCHO CH3COCHO Methylglyoxal

  AO2 CH3COCH2O2 Acetone peroxy radical

  AOOH CH3COCH2OOH Acetone hydroperoxide

  ONIT CH3COCH2ONO2 Organic nitrate

  C4 species

  BIGENE C4H8 Lumped >C3 alkene

  ENEO2 e.g., CH3CH(OH)CH(OO)CH3 Lumped alkene peroxy radical

  MEK CH3C(O)CH2CH3 Methyl ethyl ketone

  MEKO2 CH3COCH(OO)CH3 MEK peroxy radical

  MEKOOH CH3COCH(OOH)CH3 MEK hydroperoxide

  MVK CH2CHCOCH3 Methyl vinyl ketone

  MACR CH2CCH3CHO Methacrolein

  MPAN CH2CCH3CO3NO2 Methacryloyl peroxynitrate

  MACRO2 e.g., CH3COCH(OO)CH2OH MVK + MACR peroxy radical

  MACROOH e.g., CH3COCH(OOH)CH2OH MVK + MACR hydroperoxide

  MCO3 CH2CCH3CO3 MACR peroxyacyl radical

 

‹ Prev