Modeling of Atmospheric Chemistry

Home > Other > Modeling of Atmospheric Chemistry > Page 67
Modeling of Atmospheric Chemistry Page 67

by Guy P Brasseur


  C5 species

  BIGALK C5H12 Lumped >C3 alkane

  ALKO2 C5H11O2 Lumped alkyl peroxy radical

  ALKOOH C5H11OOH Lumped alkyl hydroperoxide

  ISOP C5H8 Isoprene

  ISOPO2 e.g., HOCH2C(OO)CH3CHCH2 Isoprene peroxy radical

  ISOPOOH e.g., HOCH2C(OOH)CH3CHCH2 Isoprene hydroperoxide

  HYDRALD e.g., HOCH2CCH3CHCHO Lumped unsaturated

  Hydroxycarbonyl

  XO2 e.g., HOCH2C(OO)CH3CH(OH)CHO HYDRALD peroxy radical

  XOOH e.g., HOCH2C(OOH)CH3CH(OH)CHO HYDRALD hydroperoxide

  BIGALD C5H6O2 Unsaturated dicarbonyl

  ISOPNO3 e.g., CH2CHCCH3OOCH2ONO2 Peroxy radical from NO3 + ISOP

  ONITR e.g., CH2CCH3CHONO2CH2OH Lumped isoprene nitrate

  C7 species

  TOLUENE C6H5(CH3) Lumped aromatic hydrocarbon

  CRESOL e.g., C6H4(CH3)(OH) Phenols and cresols

  TOLO2 C6H5(CH3OO) Aromatic peroxy radical

  TOLOOH C6H5(CH3OOH) Aromatic hydroperoxide

  XO2 C7H7O2 CRESOL peroxy radical

  C10 species

  TERPENE C10H16 Lumped monoterpenes, as α-pinene

  TERPO2 C10H16(OH)(OO) Terpene peroxy radical

  TERPOOH C10H16(OH)(OOH) Terpene hydroperoxide

  D.1.3 Bulk Aerosols

  Mechanism symbol Chemical formula Name

  SO4 S(VI) ≡ SO42– + HSO4– + H2SO4(aq) Sulfate

  NH4 NH4+ Ammonium

  NO3A NO3– Ammonium nitrate

  SOA Secondary organic aerosol

  OC Organic carbon

  EC Elemental carbon

  D.2 Photolysis

  The following table lists photolysis reactions of importance for the troposphere and the stratosphere. The photolysis frequency (often called J-value) for a given molecule A is calculated as a function of altitude z and solar zenith angle χ by spectral integration over all wavelengths λ of the product of (1) the solar actinic flux density qλ(λ;z,χ); (2) the absorption cross-section σA(λ) of the molecule; and (3) the quantum efficiency εA(λ):

  The actinic flux at a given altitude and for a given solar zenith angle is calculated with a radiative transfer model; see Chapter 5. The photolysis products reported in the table are the ones used in the chemical mechanism above and assume in some cases fast reactions of the immediate photolysis products; for example, CCl4 + hν → CCl3 + Cl is given as CCl4 + hν → 4Cl. Values of the photolysis frequency J for different molecules, calculated by the TUV-5.1 model (Madronich, personal communication), are provided at sea level and at 25 km altitude for the following conditions: ozone column 300 DU, solar zenith angle 30°, surface albedo 5%, no clouds, no aerosol effects. They can be viewed as typical clear-sky daytime values. Some of the photolysis processes listed here are of importance for the upper stratosphere but negligible at lower altitudes, in which case the photolysis frequency is given as “0.0.” The symbol X e-Y stands for X × 10–Y.

  D.2.1 Inorganic Species

  Reaction J at sea level [s–1] J at 25 km [s–1]

  Oxygen species

  O2 + hν → 2O(3P) 0.0 1.5e-11

  O3 + hν → O(1D) + O2 3.2e-05 1.3e-04

  O3 + hν → O(3P) + O2 4.1e-04 4.9e-04

  Hydrogen species

  H2O + hν → OH + H 0.0 0.0

  H2O + hν → H2 + O(1D) 0.0 0.0

  H2O2 + hν → 2OH 7.4e-06 1.3e-05

  Nitrogen species

  N2O + hν → O(1D) + N2 0.0 2.8e-08

  NO + hν → N + O 0.0 0.0

  NO2 + hν → NO + O 9.3e-03 1.2e-02

  N2O5 + hν → NO2 + NO3 4.3e-05 7.4e-05

  HONO + hν → NO + OH 1.5e-03 2.2e-03

  HNO3 + hν → NO2 + OH 6.0e-07 6.3e-06

  NO3 + hν → NO2 + O 1.7e-01 1.8e-01

  NO3 + hν → NO + O2 2.2e-02 2.4e-02

  HO2NO2 + hν → OH + NO3 (20%) or NO2 + HO2 (80%) 6.6e-06 2.3e-05

  Halogen species

  Cl2 + hν → 2Cl 2.3e-03 3.6e-03

  OClO + hν → O + ClO 8.2e-02 1.2e-01

  ClOOCl + hν → 2 Cl 1.7e-03 2.9e-03

  HOCl + hν → OH + Cl 2.7e-04 4.5e-04

  HCl + hν → H + Cl 0.0 2.4e-08

  ClONO2 + hν → Cl + NO3 3.9e-05 5.7e-05

  ClONO2 + hν → ClO + NO2 7.7e-06 1.6e-05

  BrCl + hν → Br + Cl 1.1e-02 1.4e-02

  BrO + hν → Br + O 3.6e-02 6.0e-02

  HOBr + hν → Br + OH 2.2e-03 3.1e-03

  BrONO2 + hν → Br + NO3 4.0e-04 5.9e-04

  BrONO2 + hν → BrO + NO2 9.8e-04 1.5e-03

  CCl4 + hν → 4Cl 0.0 1.1e-06

  CFCl3 + hν → 3Cl 0.0 5.9e-07

  CF2Cl2 + hν → 2Cl 0.0 6.9e-08

  CCl2FCClF2 + hν → 3Cl 0.0 9.6e-08

  CF3Br + hv → Br 0.0 2.6e-07

  CF2ClBr + hv → Br + Cl 0.0 2.5e-06

  CH3Cl + hν → Cl + CH3O2 0.0 1.5e-08

  CH3CCl3 + hv → 3Cl 0.0 8.8e-07

  CHF2Cl + hν → Cl 0.0 1.7e-10

  CH3Br + hv → Br + CH3O2 0.0 1.5e-06

  D.2.2 Organic Species (Chemical Mechanism)

  CH3OOH + hv → CH2O + H + OH

  CH2O + hv → CO + 2H

  CH2O + hv → CO + H2

  CH4 + hv → H + CH3O2

  CH4 + hv → 1.44 H2 + 0.18CH2O + 0.18O + 0.66 O H + 0.44 CO2 + 0.38 CO + 0.05 H2O

  CH3 CHO + hv → CH3O2+CO + HO2

  POOH + hv → CH3CHO + CH2O + HO2 + OH

  CH3COOOH + hv → CH3O2+OH + CO2

  PAN + hv → 0.6 CH3CO3 + 0.6 NO2 + 0.4 CH3O2 + 0.4 NO3 + 0.4 CO2

  MPAN + hv → MCO3+NO2

  MACR + hv → 0.67 HO2 + 0.33 MCO3 + 0.67 CH2O + 0.67 CH3CO3 + 0.33 OH + 0.67 CO

  MVK + hv → 0.7 C3H6 + 0.7 CO + 0.3 CH3O2 + 0.3 CH3CO3

  C2H5OOH + hv → CH3CHO + HO2 + OH

  C3H7OOH + hv → 0.82 CH3COCH3+OH + HO2

  ROOH + hv → CH3CO3+CH2O + OH

  CH3COCH3 + hv → CH3CO3+CH3O2

  CH3COCHO + hv → CH3CO3+CO + HO2

  XOOH + hv → OH

  ONITR + hv → HO2+CO + NO2+CH2O

  ISOPOOH + hv → 0.402 MVK + 0.288 MACR + 0.69 CH2O + HO2

  HYAC + hv → CH3CO3+HO2+CH2O

  GLYALD + hv → 2 HO2+CO + CH2O

  MEK + hv → CH3CO3+C2H5O2

  BIGALD + hv → 0.45 CO + 0.13 GLYOXAL + 0.56 HO2 + 0.13 CH3CO3 + 0.18 CH3COCHOGLYOXAL + hv → 2 CO + 2 HO2

  C5H11OOH + hv → 0.4 CH3CHO + 0.1 CH2O + 0.25 CH3COCH3 + 0.9 HO2 + 0.8 MEK + OH

  MEKOOH + hv → OH + CH3CO3+CH3CHO

  TOLOOH + hv → OH + 0.45 GLYOXAL + 0.45 CH3COCHO + 0.9 BIGALD

  TERPOOH + hv → OH + 0.1 CH3COCH3+HO2 + MVK + MACR

  D.2.3 Organic Species (Photolysis Frequencies)

  Reaction J at sea level [s–1] J at 25 km [s–1]

  CH3OOH + hv → CH3O + OH 5.4e-06 1.1e-05

  CH2O + hv → HCO + H 3.3e-05 6.5e-05

  CH2O + hv → CO + H2 3.8e-05 1.1e-04

  CH4 + hv → products 0.0 0.0

  CH3CHO + hv → CH3 + HCO 4.7e-06 5.4e-05

  CH3COOOH + hv → CH3O2 + OH + CO2 7.4e-07 1.9e-06

  PAN + hv → CH3CO3 + NO2 4.8e-07 4.1e-06

  PAN + hv → CH3 + CO2 + NO3 2.1e-07 1.7e-06

  MACR + hv → products 5.0e-06 8.1e-06

  MVK + hv → products 4.1e-06 3.5e-05

  C2H5OOH + hv → CH3CH2O + OH 5.4e-06 1.1e-05

  HOCH2OOH + hv → HOCH2O + OH 4.5e-06 9.4e-06

  C3H7OOH + hv → CH3CH(O)CH3 + OH 5.4e-06 1.1e-05

  CH3COCH3 + hv → CH3CO + CH3 8.5e-07 1.0e-05

  CH3COCHO + hv → CH3CO + HCO 1.4e-04 5.6e-04

  CH3ONO2 + hv → NO2 + CH3O 8.5e-07 1.5e-05

  HYAC + hv → CH3CO + CH2(OH) 9.1e-07 2.5e-06

  HYAC + hv → CH2(OH)CO + CH3 9.1e-07 2.5e-06

  GLYALD + hv → CH2OH+HCO 9.1e-06 2.5e-05

  GLYALD + hv → CH3OH+CO 1.1e-06 3.1e-06

  GLYALD + hv → CH2CHO+OH 7.7e-07 2.1e-06

  MEK + hv → CH3CO + C2H5 6.1e-06 4.0e-05

  C2H5CHO + hv → C2H5 + HCO 1.7e-05 8.
8e-05

  GLYOXAL + hv → HCO + HCO 7.4e-05 1.1e-04

  GLYOXAL + hv → H2 + 2 CO 1.6e-05 3.3e-05

  GLYOXAL + hv → CH2O + CO 2.9e-05 5.6e-05

  D.3 Gas-Phase Reactions

  The following table lists the rate constants k for gas-phase reactions. In the case of two-body (bimolecular) reactions, written as X + Y → products, the temperature-dependent rate constant [cm3 s–1] is generally expressed as

  where A [cm3 s–1] is the Arrhenius factor, B [K] the activation temperature equal to the activation energy Ea [J mol–1] divided by the gas constant R=8.3144 J K–1 mol–1, and T is the temperature [K]. The table also includes single-body (unimolecular) thermolysis reactions, written as X → products, with rate coefficients expressed in [s–1].

  In the case of three-body (termolecular) reactions, written as X + Y + M → XY + M where M is an inert third body (typically N2 or O2), the pressure- and temperature-dependent coefficients k [cm3 s–1] are derived by the Troe formula

  Here, [M] denotes the air number density [cm–3] and f = 0.6 if it is not otherwise specified in the tables below. The temperature dependence of coefficients k0 (low-pressure limit) and k∞ (high-pressure limit) is often expressed as C(T/300)–n where C and n are constants. For these types of reactions, the table provides the values of k0 [cm6 s–2] and k∞ [cm3 s–1]; only k0 is given when the low-pressure limit dominates throughout the atmosphere. The rate of the reverse reaction, XY + M → X + Y + M, is given as the rate of the forward reaction times an equilibrium constant.

  D.3.1 Oxygen–Hydrogen–Nitrogen Chemistry

  Oxygen reactions Rate constant

  Two-body reactions

  O + O3 → 2O2 8.0e-12 × exp(–2060/T)

  O(1D) + N2 → O + N2 2.1e-11 × exp(115/T)

  O(1D) + O2 → O + O2 3.2e-11 × exp(70/T)

  O(1D) + H2O → 2OH 2.2e-10

  O(1D) + H2 → HO2 + OH 1.1e-10

  O(1D) + N2O → N2 + O2 4.9e-11

  O(1D) + N2O → 2NO 6.7e-11

  O(1D) + CH4 → CH3O2 + OH 1.1e-10

  O(1D) + CH4 → CH2O + H + HO2 3.0e-11

  O(1D) + CH4 → CH2O + H2 7.5e-12

  O(1D) + HCN → OH 7.7e-11 × exp(100/T)

  Three-body reactions

  O + O + M → O2 + M k0 = 2.8e-34 × exp(720/T)

  O + O2 + M → O3 + M k0 = 6.0e-34 × (T/300)–2.4

  Hydrogen oxide reactions Rate constant

  Two-body reactions

  H + O3 → OH + O2 1.4e-10 × exp(–470/T)

  H + HO2 → 2OH 7.2e-11

  H + HO2 → H2 + O2 6.9e-12

  H + HO2 → H2O + O 1.6e-12

  OH + O → H + O2 2.2e-11 × exp(120/T)

  OH + O3 → HO2 + O2 1.7e-12 × exp(–940/T)

  OH + HO2 → H2O + O2 4.8e-11 × exp(250/T)

  OH + OH → H2O + O 1.8e-12

  OH + H2 → H2O + H 2.8e-12 × exp(–1800/T)

  OH + H2O2 → H2O + HO2 1.8e-12

  HO2 + O → OH + O2 3.0e-11 × exp(200/T)

  HO2 + O3 → OH + 2O2 1.0e-14 × exp(–490/T)

  HO2 + HO2 → H2O2 + O2 (kA+kB) + 1.4e-21 × [H2O] × exp(2200/T)

  kA = 3.0e-13 × exp(460/T)

  kB = 2.1e-33 × [M] × exp(920/T)

  H2O2 + O → OH + HO2 1.4e-12 × exp(–2000/T)

  Three-body reactions

  H + O2 + M → HO2 + M k0 = 4.4e-32 × (T/300)–1.3

  k∞ = 4.7e-11 × (T/300)–0.2

  OH + OH + M → H2O2 + M k0 = 6.9e-31 × (T/300)–1.0

  k∞ = 2.6e-11

  Nitrogen oxide reactions Rate constant

  Two-body reactions

  N + O2 → NO + O 1.5e-11 × exp(–3600/T)

  N + NO → N2 + O 2.1e-11 × exp(100/T)

  N + NO2 → N2O + O 5.8e-12 × exp(220/T)

  NO + HO2 → NO2 + OH 3.5e-12 × exp(250/T)

  NO + O3 → NO2 + O2 3.0e-12 × exp(–1500/T)

  NO2 + O → NO + O2 5.1e-12 × exp(210/T)

  NO2 + O3 → NO3 + O2 1.2e-13 × exp(–2450/T)

  HNO3 + OH → NO3 + H2O k = k0 + k3[M]/(1 + k3[M]/k2)with

  k0 = 2.4e-14 × exp(460/T)

  k2 = 2.7e-17 × exp(2199/T)

  k3 = 6.5e-34 × exp(1335/T)

  NO3 + NO → 2NO2 1.5e-11 × exp(170/T)

  NO3 + O → NO2 + O2 1.0e-11

  NO3 + OH → HO2 + NO2 2.2e-11

  NO3 + HO2 → OH + NO2 + O2 3.5e-12

  HO2NO2 + OH → H2O + NO2 + O2 1.3e-12 × exp(380/T)

  Three-body and reverse reactions

  NO + O + M → NO2 + M k0 = 9.0e-32 × (T/300)–1.5

  k∞ = 3.0e-11

  NO2 + O + M → NO3 + M k0 = 2.5e-31 × (T/300)–1.8

  k∞ = 2.2e-11 × (T/300)–0.7

  NO2 + NO3 + M → N2O5 + M k0 = 2.0e-30 × (T/300)–4.4

  k∞ = 1.4e-12 × (T/300)–0.7

  N2O5 + M → NO2 +NO3 + M kNO2+NO3 × 3.7e + 26 × exp(–11000/T)

  NO2 + HO2 + M → HO2NO2 + M k0 = 2.0e-31 × (T/300)–3.4

  k∞ = 2.9e-12 × (T/300)–1.1

  HO2NO2 + M → HO2 + NO2 + M kHO2+NO2 × 4.8e + 26 × exp(–10900/T)

  NO2 + OH + M → HNO3 +M k0 = 1.8e-30 × (T/300)–3.0

  k∞ = 2.8e-11

  D.3.2 Organic Chemistry

  C-1 degradation (methane CH4) Rate constant

  Two-body reactions

  CH4 + OH → CH3O2 + H2O 2.5e-12 × exp(–1775/T)

  CH3O2 + NO → CH2O + NO2 + HO2 2.8e-12 × exp(300/T)

  CH3O2 + HO2 → CH3OOH + O2 4.1e-13 × exp(750/T)

  CH3OOH + OH → CH3O2 + H2O 3.8e-12 × exp(200/T)

  CH2O + NO3 → CO + HO2 + HNO3 6.0e-13 × exp(–2058/T)

  CH2O + OH → CO + H2O + H 5.5e-12 × exp(125/T)

  CH2O + O → HO2 + OH + CO 3.4e-11 × exp(–1600/T)

  CH3O2 + CH3O2 → 2CH2O + 2HO2 5.0e-13 × exp(–424/T)

  CH3O2 + CH3O2 → CH2O + CH3OH 1.9e-14 × exp(706/T)

  CH3OH + OH → HO2 + CH2O 2.9e-12 × exp(–345/T)

  CH3OOH + OH → 0.7 CH3O2 +0.3 OH +0.3 CH2O + H2O 3.8e-12 × exp(200/T)

  CH2O + HO2 → HOCH2OO 9.7e-15 × exp(625/T)

  HOCH2OO → CH2O + HO2 2.4e+12 × exp(–7000/T)

  HOCH2OO + NO → HCOOH + NO2 + HO2 2.6e-12 × exp(265/T)

  HOCH2OO + HO2 → HCOOH 7.5e-13 × exp(700/T)

  HCOOH + OH → HO2 + CO2 + H2O 4.5e-13

  CO + OH → CO2 + H 1.5e-13 × (1.0 + 6.e-7 p)

  (p = air pressure in Pa)

  C-2 degradation (acetylene C2H2, ethylene C2H4 and ethane C2H6 ) Rate constant

  C2H2 + OH + M → 0.65 GLYOXAL + 0.65 OH + 0.35 HCOOH + 0.35 HO2 + 0.35 CO + M k0 = 5.5e-30

  k∞ = 8.3e-13 × (T/300)2.0

  GLYOXAL + OH → HO2 + CO + CO2 1.1e-11

  C2H4 + O3 → CH2O + 0.12 HO2 + 0.5 CO + 0.12 OH + 0.5 HCOOH 1.2e-14 × exp(–2630/T)

  C2H4 + OH + M → 0.75 EO2 + 0.5 CH2O + 0.25 HO2 + M k0 = 1.0e-28 × (T/300)–0.8

  k∞ = 8.8e-12

  EO2 + NO → EO + NO2 4.2e-12 × exp(180/T)

  EO + O2 → GLYALD + HO2 1.0e-14

  EO → 2 CH2O + HO2 1.6e+11 × exp(–4150/T)

  GLYALD + OH → HO2 + 0.2 GLYOXAL + 0.8 CH2O + 0.8 CO2 1.0e-11

  C2H6 + OH → C2H5O2 + H2O 8.7e-12 × exp(–1070/T)

  C2H5O2 + NO → CH3CHO + HO2 + NO2 2.6e-12 × exp(365/T)

  C2H5O2 + HO2 → C2H5OOH + O2 7.5e-13 × exp(700/T)

  C2H5O2 + CH3O2 → 0.7 CH2O + 0.8 CH3CHO + HO2 + 0.3 CH3OH + 0.2 C2H5OH 2.0e-13

  C2H5O2 + C2H5O2 → 1.6 CH3CHO + 1.2 HO2 + 0.4 C2H5OH 6.8e-14

  C2H5OOH + OH → 0.5 C2H5O2 + 0.5 CH3CHO + 0.5 OH 3.8e-12 × exp(200/T)

  CH3CHO + OH → CH3CO3 + H2O 5.6e-12 × exp(270/T)

  CH3CHO + NO3 → CH3CO3 + HNO3 1.4e-12 × exp(–1900/T)

  CH3CO3 + NO → CH3O2 + CO2 + NO2 8.1e-12 × exp(270/T)

  CH3CO3 + HO2 → 0.75 CH3COOOH + 0.25 CH3COOH + 0.25 O3 4.3e-13 × exp(1040/T)

  CH3CO3 + CH3O2 → 0.9 CH3O2 + CH2O + 0.9 HO2 + 0.9 CO2 + 0.1 CH3COOH 2.0e-12 × exp(500/T)

  CH3CO3 + CH3CO3 → 2 CH3O2 + 2 CO2 2.5
e-12 × exp(500/T)

  CH3COOH + OH → CH3O2 + CO2 + H2O 7.0e-13

  CH3COOOH + OH → 0.5 CH3CO3 + 0.5 CH2O + 0.5 CO2 + H2O 1.0e-12

  C2H5OH + OH → HO2 + CH3CHO 6.9e-12 × exp(–230/T)

  CH3CO3 + NO2 + M → PAN + M k0 = 8.5e-29 × (T/300)–6.5

  k∞= 1.1e-11 × (T/300)–1

  PAN + M → CH3CO3 +NO2 + M kCH3CO3+NO2 × 1.1e+28 × exp(–14000/T)

  PAN + OH → CH2O + NO3 4.0e-14

  C-3 degradation (propene C3H6 and propane C3H8) Rate constant

  C3H6 + OH + M → PO2 + M k0 = 8.0e-27 × (T/300)–3.5

  k∞ = 3.0e-11

  f = 0.5

  C3H6 + O3 → 0.54 CH2O + 0.19 HO2 + 0.33 OH + 0.08 CH4 + 0.56 CO + 0.5 CH3CHO + 0.31 CH3O2 + 0.25 CH3COOH 6.5e-15 × exp(–1900/T)

  C3H6 + NO3 → ONIT 4.6e-13 × exp(–1156/T)

  PO2 + NO → CH3CHO + CH2O + HO2 + NO2 4.2e-12 × exp(180/T)

  PO2 + HO2 → POOH + O2 7.5e-13 × exp(700/T)

  POOH + OH → 0.5 PO2 + 0.5 OH + 0.5 HYAC + H2O 3.8e-12 × exp(200/T)

  ROOH + OH → RO2 + H2O 3.8e-12 × exp(200/T)

  HYAC + OH → CH3COCHO + HO2 3.0e-12

  CH3COCHO + OH → CH3CO3 + CO + H2O 8.4e-13 × exp(830/T)

  CH3COCHO + NO3 → HNO3 + CO + CH3CO3 1.4e-12 × exp(–1860/T)

  ONIT + OH → NO2 + CH3COCHO 6.8e-13

  C3H8 + OH → C3H7O2 + H2O 1.0e-11 × exp(–665/T)

  C3H7O2 + NO → 0.82 CH3COCH3 + NO2 + HO2 + 0.27 CH3CHO 4.2e-12 × exp(180/T)

  C3H7O2 + HO2 → C3H7OOH + O2 7.5e-13 × exp(700/T)

  C3H7O2 + CH3O2 → CH2O + HO2 + 0.82 CH3COCH3 3.8e-13 × exp(–40/T)

  C3H7OOH + OH → H2O + C3H7O2 3.8e-12 × exp(200/T)

  CH3COCH3 + OH → RO2 + H2O 3.8e-11 × exp(–2000/T)+1.3e-13

  RO2 + NO → CH3CO3 + CH2O + NO2 2.9e-12 × exp(300/T)

  RO2 + HO2 → ROOH + O2 8.6e-13 × exp(700/T)

  RO2 + CH3O2 → 0.3 CH3CO3 + 0.8 CH2O + 0.3 HO2 + 0.2 HYAC + 0.5 CH3COCHO + 0.5 CH3OH 7.1e-13 × exp(500/T)

  C-4 degradation (lumped species BIGENE represented by butene C4H8) Rate constant

  BIGENE + OH → ENEO2 5.4e-11

  ENEO2 + NO → CH3CHO + 0.5 CH2O + 0.5 CH3COCH3 + HO2 + NO2 4.2e-12 × exp(180/T)

  C-5 degradation (isoprene C5H8 and lumped species BIGALK represented by pentane C5H12) Rate constant

  BIGALK + OH → ALKO2 3.5e-12

  ALKO2 + NO → 0.4 CH3CHO + 0.1 CH2O + 0.25 CH3COCH3 + 0.9 HO2 + 0.8 MEK + 0.9 NO2 + 0.1 ONIT 4.2e-12 × exp(180/T)

 

‹ Prev