Book Read Free

Modeling of Atmospheric Chemistry

Page 71

by Guy P Brasseur


  For example, if the mean value m of the reference population is 100, and if a sample provides 17 data points (df = 16), with a mean value of 90 and a standard deviation s of 10, we calculate for |t| a value of 4. If we adopt for α a value of 0.05, the table provides for tc a value of 2.12 (two-tailed test). We reject therefore the null hypothesis since |t| > tα, and conclude that the mean of the population from which the sample was drawn is significantly different (p < 0.05) from the reference mean m.

  Two-sample t-test. The t-distribution may also be used to test whether the means of two populations from which samples are drawn are the same. The means of the populations are mx and my, respectively. The number of data points in each sample is Nx and Ny, and the corresponding sample means are and . The sample variances are and . The t-value is computed as

  with degrees of freedom df = Nx + Ny – 2. We test again the null hypothesis (i.e., the hypothesis that mx = my) by comparing the t-value with the critical value tc. If |t| > tα the null hypothesis is discarded, and the difference in the means of the two populations is significant.

  Critical values of Student’s t-distribution with different degrees of freedom (df)

  One-tail

  Two-tails 0.50

  1.00 0.25

  0.50 0.20

  0.50 0.15

  0.30 0.10

  0.20 0.05

  0.10 0.025

  0.05 0.01

  0.02 0.005

  0.01 0.001

  0.002 0.0005

  0.001

  df

  1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

  2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599

  3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924

  4 0.000 0.741 0.941 1.190 1.533 2.132 1.776 3.747 4.604 7.173 8.610

  5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

  6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959

  7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408

  8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041

  9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

  10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587

  11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437

  12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318

  13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221

  14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140

  15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073

  16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015

  17 0.000 0.689 0.863 1.069 1.33 1.740 2.110 2.567 2.898 3.646 3.965

  18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922

  19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883

  20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850

  21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819

  22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792

  23 0.000 0.685 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.485 3.768

  24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745

  25 0.000 0.684 0.856 1.056 1.316 1.708 2.060 2.485 2.787 3.450 3.725

  26 0.000 0.684 0.856 1.056 1.315 1.706 2.056 2.479 2.779 3.435 3.707

  27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690

  28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674

  29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659

  30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646

  40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551

  60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460

  80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

  100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390

  1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

  ∞ 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.290

  Confidence level 0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%

  References

  Co T. B. (2013) Methods of Applied Mathematics for Engineers and Scientists, Cambridge University Press, Cambridge.

  Durran D. R. (2010) Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.

  Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. (2007) Numerical Recipes: The Art of Scientific computing, Cambridge University Press, Cambridge.

  Further Reading

  Earth System and Climate Science

  Baird C. and Cann M. (2008) Environmental Chemistry, Bookman, Taipei.

  Houghton J. (2009) Global Warming: The Complete Briefing, Cambridge University Press, Cambridge.

  Kump L. R., Kasting J. F., and Crane R. G. (2010) The Earth System, Prentice Hall, Upper Saddle River, NJ.

  Marshall J. and Plumb R. A. (2008) Atmosphere, Ocean and Climate Dynamics: An Introductory Text, Academic Press, New York.

  Atmospheric Science

  Frederick J. E. (2008) Principles of Atmospheric Science, Jones & Bartlett Learning, Sudbury, MA.

  Goody R. (1995) Principles of Atmospheric Physics and Chemistry, Oxford University Press, Oxford.

  Salby M. L. (2012) Physics of the Atmosphere and Climate, Cambridge University Press, Cambridge.

  Wallace J. M. and Hobbs P. V. (2006) Atmospheric Science: An Introductory Survey, Academic Press, New York.

  Atmospheric Chemistry

  Barker, J. R. (ed.) (1995) Progress and Problems in Atmospheric Chemistry, World Scientific, River Edge, NJ.

  Brasseur, G. P., Orlando J. J., and Tyndall G. S. (eds.) (1999) Atmospheric Chemistry and Global Change, Oxford University Press, Oxford.

  Brasseur G. P., Prinn R. G., and Pszenny A. A. P. (eds.) (2003) Atmospheric Chemistry in a Changing World: An Integration and Synthesis of a Decade of Tropospheric Chemistry Research, Springer, New York.

  Burrows, J. P., Platt U., and Borrell P. (eds.) (2011) The Remote Sensing of Tropospheric Composition from Space, Springer, New York.

  Finlayson-Pitts B. J, and Pitts Jr. J. N. (2000) Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, New York.

  Hobbs P. V. (1995) Basic Physical Chemistry for the Atmospheric Sciences, Cambridge University Press, Cambridge.

  Hobbs P. V. (2000) Introduction to Atmospheric Chemistry, Cambridge University Press, Cambridge.

  Jacob D. J. (1999) Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, NJ.

  Jaeschke, W. (ed.) (1986) Chemistry of Multiphase Atmospheric Systems, Springer-Verlag, Berlin.

  Seinfeld J. H. and Pandis S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York.

  Singh, H. B. (ed.) (1995) Composition, Chemistry, and Climate of the Atmosphere, Van Nostrand Reinhold, New York.

  Sportisse B. (2008) Fundamentals in Air Pollution. From Processes to Modelling, Springer, New York.

  Warneck P. (1999) Chemistry of the Natural Atmosphere, Academic Press, New York.

  Warneck P. and Williams J. (2012) The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, Springer, New York.

  Wayne R. P. (1985) Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets, and their Satellites, Oxford University Press, Oxford.

  Yung Y. L. and DeMore W. B. (1999) Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford.

  Atmospheric Physics and Dynamics

  Andrews D. G. (2010) An Introduction to Atmospheric Physics, Cambridge University
Press, Cambridge.

  Holton J. R. (2004) An Introduction to Dynamic Meteorology, Academic Press, New York.

  Houghton J. (2002) The Physics of Atmospheres, Cambridge University Press, Cambridge.

  Mak M. (2011) Atmospheric Dynamics, Cambridge University Press, Cambridge.

  McWilliams J. C. (2006) Fundamentals of Geophysical Fluid Dynamics, Cambridge University Press, Cambridge.

  Neufeld Z. and Hernández-Garcia E. (2010) Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach, Imperial College Press, London.

  Pruppacher H. R., and Klett J. D. (1997) Microphysics of Clouds and Precipitation, Kluwer, Dordrecht.

  Riegel C. A. and Bridger A. F. C. (1992) Fundamentals of Atmospheric Dynamics and Thermodynamics, World Scientific, River Edge, NJ.

  Salby M. L. (1996) Fundamentals of Atmospheric Physics, Academic Press, New York.

  Vallis G. K. (2006) Atmospheric and Oceanic Fluid Dynamics, Fundamentals and Large-Scale Circulation, Cambridge University Press, Cambridge.

  Radiative Transfer

  Goody R. M. and Yung Y. L. (1989) Atmospheric Radiation, Theoretical Basis, Oxford University Press, Oxford.

  Liou K. N. (2002) An Introduction to Atmospheric Radiation, Academic Press, New York.

  Petty G. W. (2006) A First Course in Atmospheric Radiation, Sundog Publishing, Madison, WI.

  Thomas G. E., and Stamnes K. (1999) Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, Cambridge.

  Turbulence, Boundary Layer Meteorology, and Surface Exchanges

  Bonan G. (2008) Ecological Climatology, Concepts and Applications, Cambridge University Press, Cambridge.

  Garratt J. R. (1992) The Atmospheric Boundary Layer, Cambridge University Press, Cambridge.

  Granier, C., Artaxo P., and Reeves C. E. (eds.) (2004) Emissions of Atmospheric Trace Compounds, Kluwer, Dordrecht.

  Monson R. and Baldocchi D. (2009) Terrestrial Biosphere–Atmosphere Fluxes, Cambridge University Press, Cambridge.

  Stull R. B. (1988) An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht.

  Wyngaard J. C. (2010) Turbulence in the Atmosphere, Cambridge University Press, Cambridge.

  Vilà-Guerau de Arellano J., van Heerwaarden C. C., van Stratum B. J. H., and van den Dries K. (2015) Atmospheric Boundary Layer: Integrating Air Chemistry and Land Interactions, Cambridge University Press, Cambridge.

  Middle Atmosphere

  Andrews D. G., Holton J. R., and Leovy C. B. (1987) Middle Atmosphere Dynamics, Academic Press, New York.

  Brasseur G. P. and Solomon S. (2005) Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer, New York.

  Dessler A. (2000) Chemistry and Physics of Stratospheric Ozone, Academic Press, New York.

  Müller, R. (ed.) (2012) Stratospheric Ozone Depletion and Climate Change, RSC Publishing, Cambridge.

  Numerical Methods, Modeling, and Data Assimilation

  Co T. B. (2013) Methods of Applied Mathematics for Engineers and Scientists, Cambridge University Press, Cambridge.

  Courant R. and Hilbert D. (1962), Methods of mathematical Physics, vols. 1 and 2, Wiley, New York.

  Daley R. (1991) Atmospheric Data Analysis, Cambridge University Press, Cambridge.

  DeCaria A. J. and Van Knowe G. E. (2014) A First Course in Atmospheric Numerical Modeling, Sundog Publishing, Madison, WI.

  Durran D. R. (2010) Numerical Methods for Fluid Dynamics, with Applications to Geophysics, Springer, New York.

  Gear W. (1971) Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ.

  Fox R. O. (2003) Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge.

  Gershenfeld N. (1999) The Nature of Mathematical Modeling, Cambridge University Press, Cambridge.

  Hairer E. and Wanner G. (1996) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin.

  Jacobson M. Z. (1999) Fundamentals of Atmospheric Modeling, Cambridge University Press, Cambridge.

  Kalnay E. (2003) Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge.

  Kiehl, J. T. and Ramanathan V. (eds.) (2006) Frontiers of Climate Modeling, Cambridge University Press, Cambridge.

  Lahoz, W., Khattatov B., and Ménard R. (eds.) (2010) Data Assimilation: Making Sense of Observations, Springer, New York.

  Lauritzen, P. H., Jablonowski C., Taylor M. A., and Nair R. D. (eds.) (2011) Numerical Techniques for Global Atmospheric Models: Tutorials, Springer, New York.

  Müller P. and von Storch H. (2004) Computer Modelling in Atmospheric and Oceanic Sciences: Building Knowledge, Springer, New York.

  Potter D. (1977) Computational Physics, Wiley, New York.

  Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. (2007) Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.

  Rodgers C. D. (2000) Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, River Edge, NJ.

  Slingerland R. and Kump L. (2011) Mathematical Modeling of Earth’s Dynamical Systems: A Primer, Princeton University Press, Princeton, NJ.

  Stensrud D. J. (2007) Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, Cambridge.

  Stoer J. and Bulirsch R. (1993) Introduction to Numerical Analysis, 2nd edition, Springer-Verlag, Berlin.

  Trenberth K. E. (ed.) (1992) Climate System Modeling, Cambridge University Press, Cambridge.

  Warner T. T. (2011) Numerical Weather and Climate Prediction, Cambridge University Press, Cambridge.

  Washington W. M. and Parkinson C. L. (2005) An Introduction to Three-Dimensional Climate Modeling, University Science Books, Sausalito, CA.

  Wilks D. S. (2011) Statistical Methods in the Atmospheric Sciences, Academic Press, New York.

  Index

  absorption cross-section, 207

  absorption of radiation absorption efficiency, 219

  definition, 207

  absorptivity, 212

  acceleration due to gravity. See standard gravity

  acetone air–sea exchange, 432

  acid rain, 14

  actinic flux, 210actinic flux density, 210

  actinic photon flux, 210

  activated complex, 230

  activation energy, 230

  ADI. See alternating direction implicit method

  adiabatic lapse rate and atmospheric stability, 35

  dry, 33

  wet, 34

  adjoint, 502–509continuous, 509

  discrete, 509

  forcing, 502, 521

  self-adjoint, 509

  sensitivities, 504–505

  advection, 275, 277equation, 276–277, 279, 281–282, 303, 311

  semi-Lagrangian, 276

  timescale, 280

  advection–diffusion equation, 139

  aeronomy, 26–27

  aerosol microphysics, 95

  aerosol observations atmospheric components measured, 440–441

  in-situ composition, 444

  size distribution, 443

  total concentration, 442

  remote aerosol optical depth (AOD), 460

  aerosols accumulation mode, 244

  and air quality, 14

  Aitken nuclei mode, 244

  atmospheric abundance, 21

  chemical composition, 78–80types, 78

  and climate, 14

  cloud condensation nuclei (CCN), 81

  and cloud formation, 29

  coarse mode, 244

  core-shell model, 80

  hydrophobic, hydrophilic, 81

  hygroscopicity, 80

  microphysical processes, 243schematic representation, 245

  mixing state, 80

  nucleation mode, 244

  optical properties aerosol optical depth, 82
>
  scattering, absorption, extinction efficiency, 81

  primary (POA) and secondary organic aerosol (SOA), 80

  size distribution, 21, 76–78discrete representation, 247

  modal representation, 249

  modes, 77–78

  monodisperse, polydisperse, 76

  monodisperse representation, 247

  sectional representation, 248

  size distribution functions, 76–77, 243

  spline representation, 247

  sulfate–nitrate–ammonium (SNA) aerosol, 78, 79

  terminology, 75

  aggregation bias, 518

  aggregation error, 516–520covariance matrix, 518

  aggregation matrix, 517

  air density, 21

  air mass factor (AMF), 215, 459

  air parcel definition, 32

  air pressure. See atmospheric pressure

  air temperature. See atmospheric temperature

  aircraft measurements. See observing platforms

  albedo of Earth’s surface, 223

  aliasing, 140

  alternating direction implicit method, 178

  AMF. See air mass factor (AMF)

  angular rotation velocity of Earth, 36

  anti-cyclone, 38in the subtropics, 44

  AO. See Arctic Oscillation (AO)

  Ar. See Argon (Ar)

  Arctic Oscillation (AO), 47and middle atmosphere dynamics, 51

  area sources, 412

 

‹ Prev