Modeling of Atmospheric Chemistry

Home > Other > Modeling of Atmospheric Chemistry > Page 72
Modeling of Atmospheric Chemistry Page 72

by Guy P Brasseur

argon (Ar), 21atmospheric abundance, 22

  Arrhenius equation, 230

  assimilation, 488

  autotrophic respiration, 402

  A-stable, 136

  asymmetry factor, 220

  atmosphere vertical structure, 24–27

  atmospheric chemistry model. See chemical transport model

  atmospheric composition, 21–22, 54mass, 21

  of dry air, 28

  primary and secondary species, 54

  atmospheric humidity, 28

  atmospheric lifetime. See e-folding lifetime

  atmospheric observing system, 438, 450using models to interpret observations, 480–483

  atmospheric pressure, 27–28vertical profile, 21, 25, 31–32

  atmospheric scale height. See scale height

  atmospheric stability, 31–35

  atmospheric temperature, 24barriers, 389–390

  mesopause, 25

  stratopause, 25

  stratosphere, 25

  at the surface, 21

  thermopause, 25

  tropopause, 25

  vertical profile, 24

  atmospheric tides, 50–51

  atmospheric transport interhemispheric, 43

  meridional mixing, 43

  attenuation coefficient. See Extinction coefficient

  autocorrelogram, 469

  averaging kernel, 493matrix, 511–513

  Avogadro’s number, 27

  azimuthal angle, 571

  band matrix, 499

  baroclinic atmosphere, 40–41and circulation in the troposphere, 43

  definition, 40

  baroclinic instability, 41

  barometric law, 31–32

  barosphere, 27

  barotropic atmosphere, 40–41definition, 40

  Bayes’ theorem, 490–491Bayesian solution, 490

  normalizing factor, 490

  posterior pdf, 489

  prior pdf, 490

  Beer’s law, 81

  Beer–Lambert Law, 207

  Bergeron process. See precipitation

  bidirectional reflectance distribution function (BRDF), 224

  big-leaf model, 418

  bimolecular reaction, 230–231collision frequency, 230

  reaction rate, 230

  binary nucleation, 245

  biofixation, 405

  biomass burning. See open fires

  blackbody, 211radiation, 211–213

  Boltzmann’s constant, 27, 211

  bottom-up constraint, 488

  bottom-up emission inventories, 400

  boundary condition Dirichlet, 282

  periodic, 282

  no-slip, 105

  Boussinesq approximation, 353

  box model definition, 17

  Brewer–Dobson circulation, 25, 50, 57

  broad-band model, 226

  Brownian diffusion coefficient, 246

  Brunt–Väisälä frequency, 389

  burning efficiency, 409

  calibration, model, 437

  carbon cycle, terrestrial, 403

  carbon dioxide (CO2), 21atmospheric abundance, 22

  greenhouse gas, 23

  interhemispheric gradient, 43

  carbon monoxide (CO), 68–69global distribution, 69

  cascade impactors. See aerosol observations:in- situ

  Cauchy momentum equation, 104

  CCL. See convective cloud layer (CCL)

  CCN. See cloud condensation nuclei (CCN)

  central limit theorem, 495

  centered root mean square error (CRMSE), 475

  CFCs. See chlorofluorocarbons

  CFL criterion, 288

  CH4. See methane (CH4)

  Chapman mechanism. 11–12, See ozone (O3), stratospheric

  Chappuis band, 55, 217

  characteristic timescale, 97

  checkerboard noise, 527

  chemical covariance, 349–351

  chemical eddy transport, 127

  chemical evolution equation, 232

  chemical family, 56, 262, 269

  chemical ionization mass spectrometry (CIMS), 439atmospheric components measured, 440–441

  chemical lifetime, 98

  chemical mechanism definition, 233

  stiffness, 254, 262

  chemical segregation, 368

  chemical solvers, 54

  chemical transport model, 4880-D models, 17

  1-D models, 17

  2-D models, 17

  biogeochemical processes, 15

  and the continuity equation, 5, 15

  chemical mechanism, 54

  data assimilation, 16

  definition, 1, 15

  Eulerian versus Lagrangian, 16–17, 276

  field campaigns, 438

  history, 1–2, 11–15

  offline, 15

  online, 15

  chemiluminescence, 442atmospheric components measured, 440–441

  chlorofluorocarbons (CFCs), 12

  chromatography. See also gas chromatography (GC)definition, 439

  CIMS. See chemical ionization mass spectrometry (CIMS)

  Clausius–Clapeyron equation, 30and the adiabatic lapse rate, 30

  climate models history, 9–11

  closure. See continuity equation:closure relation

  cloud condensation nuclei (CCN), 245

  cloud-resolving model. See large eddy simulation (LES)

  clouds formation, 24, 29, 378

  in the planetary boundary layer, 49

  CO2. See carbon dioxide (CO2)

  coagulation, 247

  coagulation coefficient, 246

  compensation point, 428

  complementary slackness condition, 529

  compressibility, 279

  computing atmospheric chemistry models, 1, 15

  cluster, 19

  Earth system models, 15

  Fortran, 19

  general circulation models, 10

  grid, 19

  high-performance, 4, 19–20

  memory, 19

  message passing interface (MPI), 19

  meteorological models, 8–9

  models, 4

  Moore’s law, 4

  node, 19–20

  open multi-processing (openMP), 19

  parallelization, 7, 19

  power, 4, 8

  processors, 19

  speed, 19–20

  supercomputer, 7, 19

  condensation, 246

  condensation growth rate, 246

  condensation equation, 246

  condensation, aerosol, 246

  condensation nuclei counters. See aerosol observations: in-situ

  conditional PDF, 490, 492

  conditional stability. See stability

  conductance, 429

  conservation of mass, 275

  conservation equation atmospheric dynamics, 102

  energy. See equation of energy

  momentum, 104

  continuity equation aerosol, 95

  anelastic, 116

  box models, 17

  chemical species, 85

  closure relation, 343, 371

  Eulerian form, 5, 277

  history, 7

  Lagrangian form, 17, 278

  Reynolds decomposition of, 347

  vertical, 367

  continuum regime, 240

  convection, 24, 275parameterization, 378–383

  velocity scale, 350

  deep, 378

  convective cloud layer (CCL), 49

  convective precipitation, 383

  convective parameterizations and vertical motion in models, 35

  convective velocity scale. See convection:velocity scale

  coordinate system eta η, 121

  hybrid sigma-pressure σ–p, 121

  isentropic, 122

  isobaric. See pressure

  log-pressure, 119

  pressure, 117

  sigma σ, 120

  Coriolis force and general circulation, 42–43

 
; and Rossby waves, 50

  Coriolis parameter, 38and planetary-scale waves, 50

  correlated k-distribution method, 226

  correlativity, 276

  cost function, 493, 495regularization factor γ, 516

  χ2, 493

  Courant number, 285–286

  covariance, 582

  CRMSE. See centered root mean square error (CRMSE)

  crystallization relative humidity (CRH), 80

  CTM. See chemical transport model

  curl definition, 571

  theorem, 573

  cuticles, of the leaf, 422

  cyclone, 38and baroclinic instability, 41, 43

  Dalton’s law, 28

  Damköhler number, 350

  data assimilation, 488, 530–5333D-VAR, 530–531

  4D-VAR, 9, 530, 533

  analysis, 529

  chemical, 488, 529–530

  meteorological, 529

  reanalyses, 529

  variational. See 3D-VAR and 4D-VAR

  degrees of freedom for signal, 512–515

  deliquescence relative humidity (DRH), 80

  denitrification, 405

  deposition velocity, 416

  deterministic models, 4, 6definition, 5

  detrainment, 378

  diabatic heating in radiative transfer, 210

  DIAL. See remote sensing, active

  diagnostic equation, 114

  differential mobility analyzers. See aerosol observations: in-situ

  diffuse-reactive parameter, 242

  diffusion analytical solution, 359

  coefficient, 279, 285, 289, 305, 353, 356

  equation, 358

  numerical, 285, 289, 315, 365, 390–394

  numerical solution, 358–365alternating direction implicit (ADI), 364

  Crank–Nicholson, 363

  DuFort–Frankel, 360

  Richardson, 360

  three level, 363

  timescale, 280

  turbulent, 279

  diffusive filter, 179

  digital spatial filter, 179

  dimethyl sulfide (DMS) in the PBL, 368

  direct numerical simulation (DNS), 343

  discrete ordinates method, 222

  displacement height, 377

  divergence, flux, 5, 15

  divergence, 277definition, 571

  of a vector field, 571

  theorem, 277, 573

  DOAS. See remote sensing, passive

  DOFS. See degrees of freedom for signal

  downdraft, 378

  drag coefficient, 426

  dry deposition, 416

  dynamic viscosity, 105

  Earth system models definition, 15

  Eddington method, 223

  eddy correlation, 448

  eddy diffusion coefficient, 351

  eddy diffusivity of heat, 371

  eddy flow, 275

  eddy flux. See turbulence

  eddy viscosity coefficient, 371

  effective temperature of the Earth, 22

  of the Sun, 22

  efficiency computational, 276

  effective scale height, 32

  e-folding lifetime, 97

  eigenanalysis. See eigendecomposition

  eigendecomposition, 497–498

  eigenvalue, 254definition, 570

  eigenvector, 570

  Ekman spiral, 373

  El Niño–Southern Oscillation (ENSO), 44

  electron microscopy. See aerosol observations:in situ

  emission, at Earth’s surface, 400anthropogenic, 412

  emission factor, 400

  of open fires, 408

  terrestrial biogenic, 402

  volcanic, 410

  emissivity, 212

  empirical orthogonal functions (EOFs), 460

  endothermic reaction, 231

  ENSO. See El Niño–Southern Oscillation (ENSO)

  entrainment, 378in the planetary boundary layer, 49, 372

  velocity, 373

  EOFs. See empirical orthogonal functions (EOFs)

  equation of motion, 107

  equation of state, 27–28for dry air, 28

  for moist air, 29

  for water vapor, 28

  error characterization of models and observations, 454

  error correlation, 497matrix, 497

  error covariance matrix, 497–500construction, 499–500

  validity, 499

  error, model, 5, 9, 15, 17–18and inverse modeling, 454, 458

  coding error (“bugs”), 455

  community assessments, 456

  grid resolution, 455–456

  model parameters, 456

  noise (meteorology), 456

  numerical error, 455

  parameterization error, 456

  tolerance, 437, 480

  types, 436–437

  error, observations, 454random, 454

  satellite measurements, 454

  systematic, 454

  escape velocity, 26

  ESMs. See Earth system models

  Euler equation, 108

  evaluation, model aerosols, 463

  and data assimilation, 438

  definition, 436

  with linear regression, 469

  satellite observations, 459–460

  with scatterplots, 469

  selection of observations, 458

  with statistical metrics. See statistical metrics, of model skill

  timescale considerations, 460

  exchange velocity, 429

  exobase, 27

  exothermic reaction, 231

  expected value operator, 491

  extinction coefficient, 207

  extinction of radiation, 207extinction efficiency, 219

  Favre decomposition, 349

  filter measurements, 439

  filtering, 336

  finite difference methods, 254, 281Adams–Bashforth–Moulton, 261

  backward differientiation formulae. See Gear solver

  backward Euler, 258–259, 268

  backward scheme, 131

  boundary conditions, 303

  centered difference, 283

  central scheme, 131

  checkerboarding, 296

  CHEMEQ, 265

  comparison, 298

  Crank–Nicholson, 259, 291

  Crowley. See Lax–Wendroff

  ET method. See extrapolation

  explicit, 254, 257, 260, 262–263, 285

  exponential approximation, 263

  extrapolation, 261, 263–264

  forward Euler, 257, 259, 261, 284

  forward scheme, 131

  fully explicit. See forward Euler

  fully implicit. See backward Euler

  Gear solver, 271

  Heun, 292

  implicit, 256, 262, 268, 270, 290

  Lax, 287

  Lax–Wendroff, 289

  leapfrog, 295

  Leith. See Lax–Wendroff

  Matsuno, 291

  midpoint, 260

  multi-step, 261

  predictor-corrector, 259, 261

  quasi-steady-state approximation, 264

  QUICK, 294

  QUICKEST, 295

  RADAU5 solver, 261

  relaxation coefficient, 305

  RODAS3 solver, 271

  ROS2 solver, 271

  Rosenbrock solver, 270

  Runge–Kutta, 260, 270

  semi-implicit Euler, 259

  stability, 254, 256–257, 262, 271

  trapezoidal scheme, 134

  truncation error, 283

  TWOSTEP, 266

  upstream method, 293

  upwind differencing. See upstream method

  upwind leapfrog, 297

  finite element methods, 335Chapeau function, 159

  Galerkin, 335

  spectral element, 335

  finite volume methods, 278, 305Beam–Warming. See upwind slope

  centered slope, 309

  Crowley–Tremback–Bott, 32
0–322

  donor cell, 307

  downward slope, 309

  flux correction, 311

  flux limiter, 312

  Fromm. See centered slope

  Lagrangian, 325–328

  linear piecewise, 312

  minmod, 313

  MPDATA, 315–316

  piecewise linear, 307–308

  piecewise parabolic, 319–320

  PPM. See piecewise parabolic

  Prather, 322–325

  quadratic, 307

  semi-Lagrangian, 332

  SHASTA, 316–319

  slope limiter, 312

  superbee, 313

  total variation diminishing (TVD), 311

  upwind slope, 309

  van Leer, 313

  fixed nitrogen, 405

  flexibility, 276

  Flops. See computing:speed

  fog deposition, 399

  forecast model, 488, 530

  forecast state, 488

  Fortran. See computing

  forward model, 487, 491linearization, 502

  forward model error, 491–492covariance matrix, 499

  vector, 498

  Fourier number, 285

  Fourier transform, 576

  free molecular regime, 240

  free-running model, 16

  free troposphere definition, 47

  layers, 390–394

  and the planetary boundary layer, 47–49

  frequency of radiation, 205

  friction force and geostrophic flow, 40

  friction velocity, 374

  frontal system and baroclinic instability, 41

  FTIR. See remote sensing, passive

  gain factor, 493

  gain matrix, 511

  gas chromatography (GC), 439and mass spectrometry (GC-MS), 439

  atmospheric components measured, 440–441

  gas constant for air, 27

  for dry air, 28, 31

  for water vapor, 28

  universal, 27

  gas-particle equilibrium, 236–239aqueous solution, 236–238

  non-aqueous solution, 236

  partitioning coefficient, 237

  solid particles, 238

  gas-particle mass transfer equation, 241

 

‹ Prev