Modeling of Atmospheric Chemistry

Home > Other > Modeling of Atmospheric Chemistry > Page 73
Modeling of Atmospheric Chemistry Page 73

by Guy P Brasseur


  Gauss–Ostrogradsky theorem. See divergence, theorem

  GC. See gas chromatography (GC)

  GCM. See general circulation models

  GC-MS. See gas chromatography (GC)

  general circulation definition, 42

  in the middle atmosphere (>10 km), 49

  in the planetary boundary layer, 47–49

  in the troposphere, 41

  general circulation models, 16history, 10

  geocorona (aeronomy), 27

  geometric altitude, 31–32

  geometric optics, 218

  geometric scattering, 82, 218

  geometric standard deviation, 243

  geopotential, 32, 39

  geopotential height, 32

  geostatistical inversion, 527

  geostrophic approximation, 38

  geostrophic balance, 35

  GFCR. See remote sensing, passive

  global biogeochemical models, 399

  global energy budget and general circulation, 41

  and global warming, 24

  global heat budget. See global energy budget

  Godunov’s theorem definition, 290

  gravitational settling of particles, 416

  gravity waves, 50parameterization, 388–389

  green function, 93transition probability density, 93

  greenhouse effect definition, 22–23

  greenhouse gases, 225

  grid computing. See computing

  grid geometry cubed sphere grid, 147

  dynamic adaptive grid, 148

  icosahedral grid, 147

  longitude–latitude grid, 145

  mesh refinement, 148

  Voronoi tessellation, 146

  gross primary productivity (GPP), 403

  group velocity. See numerical dispersion

  H2. See hydrogen, molecular (H2)

  Hadley cells, 42and anti-cyclones, 44

  halogen radicals, 72–74

  Hartley band, 55, 217

  He. See helium (He)

  heat of reaction, 215–231

  helium (He) atmospheric abundance, 22

  in the thermosphere, 25

  Henry’s law, 236effective constant, 237, 384

  Henry’s law constant, 236for air–sea exchange, 430

  Herzberg continuum, 217

  Hessian, 523definition, 569

  heterogeneous chemistry, 235

  heterosphere (aeronomy), 27

  heterotrophic respiration, 402

  high-NOx regime, 66

  high-performance computing. See computing

  HIRDLS. See remote sensing, passive

  homosphere (aeronomy), 27

  Huggins band, 55, 217

  hydrodynamics, 26effective scale height, 32

  equations of the atmosphere, 32

  hydrogen, molecular (H2) atmospheric abundance, 22

  hydrogen oxides radical family HOx family, 61HOx-catalyzed ozone loss, 61

  production and loss, 61

  HOy family, 61

  hydrogen peroxide (H2O2), 61

  hydroperoxyl radical (HO2), 61

  hydrostatic approximation, 31–32

  hydrostatic equilibrium, 31

  hydrostatic law, 32

  hydroxyl radical (OH) history, 12–13

  chemistry, 57

  hygroscopic growth factors, 243

  ice nuclei (IN), 29

  ideal gas law and atmospheric stability, 31

  application to the atmosphere, 21, 27, 40

  IID. See independent and identically distributed

  IN. See ice nuclei (IN)

  in-situ observations aerosols, 444

  gases, 439–442

  independent and identically distributed, 495

  inertial impaction, of particles, 422

  infrared (IR) radiation and effective temperature, 22

  and the global energy budget, 23

  and remote sensing, 444

  terrestrial emission, 22–23

  instrument error, 491–492covariance matrix, 499

  vector, 498

  interception, of particles, 422

  Intergovernmental Panel on Climate Change, 10–11

  interhemispheric mixing timescale, 43

  interpolation, 184

  Intertropical Convergence Zone (ITCZ) and interhemispheric mixing, 43

  and precipitation, 44

  definition, 42

  seasonal migration, 44

  inverse modeling, 15, 18, 370bias, 495–496

  definition, 18, 487

  and model error, 437

  scalar example, 491

  inverse solution evaluation, 515–516

  positivity, 528–529

  inversion adjoint-based, 520–523

  analytical, 509–520

  ionosphere, 27

  ion drag, 111

  IPCC. See Intergovernmental Panel on Climate Change

  IR. See infrared (IR) radiation

  irradiance, 209

  isentropic definition, 40

  isobaric definition, 40

  isoprene, 64biogenic emission, 404

  isopycnic definition, 40

  isothermal definition, 40

  ITCZ. See intertropical convergence zone (ITCZ)

  Jacobian definition, 569

  Jacobian matrix, 489, 501–502

  jet stream, 41

  Kalman filter, 530–533ensemble, 533

  linear, 532

  persistence model, 532

  prior error covariance, 532

  prior estimate, 532

  suboptimal, 533

  Karush–Kuhn–Tucker condition, 528

  Kelvin waves, 50

  Kelvin–Stokes’ theorem. See curl

  Kirchhoff’s law, 212

  Kinematic viscosity, 108

  KKT. See Karush–Kuhn–Tucker condition

  Knudsen number, 246

  Kolmogorov scale, 342

  Kr. See krypton (Kr)

  Kriging, 192

  krypton (Kr) atmospheric abundance, 22

  Laminar flow, 344

  La Niña. See El Niño–Southern Oscillation (ENSO)

  Lagrange function, 529

  Lagrange multipliers method, 529

  Lagrangian derivative. See total derivative

  Lagrangian particle dispersion model, 162

  Lagrangian stochastic model, 162

  Lambertian surface, 223

  Langevin equation, 163

  Langmuir isotherm, 239

  Laplace transform, 576

  Laplacian definition, 572

  lapse rate, 24

  large eddy simulation (LES), 343, 368

  large-scale precipitation, 383

  LES. See large eddy simulation (LES)

  laser-induced fluorescence (LIF), 442atmospheric components measured, 440–441

  latent heat, 23, 25and clouds, 30

  flux, 366

  of sublimation, 30

  of vaporization, 30

  leaf area index (LAI), 404

  LEO. See satellite measurements

  LIF. See laser-induced fluorescence (LIF)

  lifetime. See e-folding lifetime

  lightning parameterization, 386–388

  Lindemann–Hinshelwood rate, 232

  line-by-line models, 225

  linear regression error estimate, 466

  Pearson correlation coefficient, 465, 473

  liquid water content, 237

  local thermodynamic equilibrium (LTE), 224

  locality, 276

  log law for the wind, 418

  longwave radiation. 205. See infrared (IR) radiation

  Lorenz–Mie theory. See Mie theory

  low-NOx regime, 66

  L-stable, 137

  lumped species, 234

  Lyman-α line, 217

  Lyapunov exponent, 392

  magnetohydrodynamics, 26

  magnetosphere, 27

  Markov chain Monte Carlo, 525–526

  mass accommodation coefficient, 240


  mass density of air, 27

  mass extinction cross section, 207

  mass spectrometry (MS), 439, See also aerosol observations: in-situdefinition, 439

  mass transfer rate coefficient, 239

  mathematical models definition, 4

  history, 4–6

  maximum likelihood estimator, 526

  matrix manipulation, 566–570Gauss–Seidel iteration, 266

  Jacobi iteration, 266

  LU decomposition, 266

  Max-DOAS. See remote sensing, passive

  MCMC. See Markov chain Monte Carlo

  mean age of air, 94

  mean bias, 495, 500

  mean free path, 240

  meridional mixing timescale, 43

  mesopause, 25, 50

  mesophyll, of the leaf, 422

  mesosphere, 25, 27

  metastable equilibrium and cloud formation, 30

  meteorological models ensembles, 6

  history, 6–9

  and the Navier–Stokes equation, 5, 7

  meteorology definition, 26

  methane (CH4), 21atmospheric abundance, 22

  biogenic emission, 402

  method of moments (MOM), 249

  Metropolis–Hastings algorithm, 526

  middle atmosphere (>10 km) dynamics, 49

  Mie scattering, 82

  Mie theory, 217

  mineral dust emission processes, 412

  mineralization, 405

  mixed layer depth, 350

  in the planetary boundary layer, 49

  mixing length in a planetary boundary layer, 372

  mixing ratio definition, 21

  of water vapor, 28

  mode, aerosol, 250

  model definition, 2–3

  history, 3–4

  molar mass of air, 27

  of dry air, 28

  of moist air, 28

  of water, 28

  molar mixing ratio. See mixing ratio

  molarity, 236

  mole fraction. See mixing ratio

  molecular diffusion, 88

  molecular diffusion coefficient, 89

  molecular extinction cross section, 207

  molecular weight of dry air, 31

  moment dynamics equations (MDEs), 249

  momentum equation, 104

  Monin–Obukhov length, 374

  monochromatic value. See spectral density

  monotonicity, 275, 311

  monsoon circulation, 43

  Moore–Penrose pseudoinverse, 527

  MS. See mass spectrometry (MS)

  multimedia models, 399

  multiphase chemistry. See heterogeneous chemistry

  N2. See nitrogen, molecular (N2)

  N2O. See nitrous oxide (N2O)

  NAO. See Arctic Oscillation (AO)

  narrow-band model, 226

  Navier–Stokes equation. See meteorological models

  Ne. See neon (Ne)

  neon (Ne) atmospheric abundance, 22

  net biome production (NBP), 403

  net ecosystem productivity (NEP), 403

  net primary productivity (NPP), 403

  neural network, 173

  neutral atmospheric stability, 34

  Newton–Raphson iteration, 270, 272

  nitrification, 405

  nitrogen oxides (NOx) and stratospheric ozone loss, 12, 62

  and tropospheric ozone production, 14

  fuel NOx, 62

  source and sinks, 62–64

  thermal NOx. See Zel’dovich mechanism

  global inventory of anthropogenic emissions, 412

  soil emission, 405

  nitrogen, molecular (N2), 21atmospheric abundance, 22

  nitrous oxide (N2O) atmospheric abundance, 22

  oxidation by O(1D), 62

  North Atlantic Oscillation (NAO). See Arctic Oscillation (AO)

  NOx. See nitrogen oxides

  NOx-limited regime. 70

  NOx-saturated regime. See VOC-limited regime

  NOy, 63–64

  non-hydrostatic equation, 114

  non-methane volatile organic compounds (NMVOCs) biogenic emission, 184

  non-transport theorem, 192

  nucleation, 245bursts, 245

  rate, 246

  null cycle, 62

  number density, 27

  numerical dispersion definition, 283

  numerical fixer, 336

  numerical method in solving radiative transfer equation, 222–223

  O2. See oxygen, molecular (O2)

  O3. See ozone (O3), stratospheric; ozone (O3), tropospheric

  observations, of surface fluxes, 448–450eddy accumulation method, 448

  eddy correlation method, 448

  flux-gradient method, 450

  observation vector, 487, 496

  observational error, 487, 492covariance matrix, 496, 498–499

  covariance matrix in sate space, 512

  in state space, 494

  unbiased, 492

  vector, 489, 496

  observations, of the atmosphere in-situ, 439–444

  remote, 440–441

  observing platforms aircraft, 452

  satellites, 444

  surface, 451

  observing system. See atmospheric observing system

  observing system simulation experiments, 533definition, 18, 533

  analysis run, 535

  control run, 534

  nature run, 534

  true atmosphere, 534

  observing systems definition, 17–18

  ODE. See ordinary differential equations

  offline approach, 15

  OH. See hydroxyl radical

  one-way deposition, 416

  online approach, 15

  open fires emission factors, 408

  emission rate calculation, 408

  and plume rise, 408

  operator splitting, 174

  operators chemistry, 253

  splitting, 279, 303, 383

  transport, 253, 275

  optical depth formulation, 207

  optical path. See slant optical depth

  optical particle counter. See aerosol observations:in situ

  optimal estimate, 459, 487, 492–493, 510–511error variance. See posterior error variance

  nonlinear, 494

  ordinary differential equations, 253–254definition, 574

  organic nitrate (RONO2), 67

  organic peroxides (ROOH), 66

  organic peroxy radical (RO2), 66

  OSSEs. See observing system simulation experiments

  oxygen, molecular (O2), 21atmospheric abundance, 22

  ground and excited states of O atoms, 55

  odd oxygen family (Ox), 56

  ozone (O3), stratospheric, 21, 55–60Antarctic ozone hole, 12, 73

  atmospheric abundance, 22

  Chapman mechanism, 11–12

  distribution, 57–58

  historic milestones, 58

  photolysis, 55

  production and loss, 14, 55–56

  polar stratospheric clouds (PSCs), 12

  ozone (O3), tropospheric, 21, 69–71a simple production mechanism, 233

  atmospheric abundance, 22

  and climate, 14

  global distribution, 71

  isopleth diagram, 70

  production and loss, 14, 69–70

  dry deposition velocity, 425

  ozonesondes, 439–441atmospheric components measured, 440–441

  PAN, 63–64

  parameter vector, 487

  partial differential equations (PDEs), 574

  particles. See aerosols

  particulate matter. See aerosols

  path length, 208

  PBL. See planetary boundary layer (PBL)

  PDF. See probability density function

  Péclet number, 279numerical, 280

  Pearson’s correlation coefficient, 497

  phase diagram water, 30

  phase speed. See
numerical dispersion

  phenology, of plant, 404

  photosynthetically active radiation (PAR), 404

  photochemistry, photochemical mechanisms, 54

  photolysis, 229definition, 227

  in the Schumann–Runge bands, 228–229

  reaction rate, 227

  photolysis frequency, 227

  photon flux density, 210

  piston velocity. See exchange velocity

  Planck constant, 205

  Planck function, 212

  Planck’s law, 211

  planetary albedo, 22–23

  planetary boundary layer (PBL), 47–49mixing timescale, 47

  parameterization, 366–378

  surface layer, 374–378, See surface layer

  planetary waves, 25

  planetary waves. See also Kelvin waves

  plant functional types (PFTs), 404

  plume model, 166

  point sources, 412

  polar stratospheric cloud (PSC), 73

  polar vortex, 50and Arctic oscillation (AO), 51

  and the Antarctic ozone hole, 52

  as a dynamical barrier, 390

  definition, 52

  positive definite, 498

  potential temperature, 32–33

  potential vorticity unit, 112

  posterior error covariance matrix, 511–512

  covariance matrix in observation space, 518

  variance, 494

  posterior estimate. See optimal estimate

  Prandtl number, 377

  precipitation Bergeron process, 31

  and riming, 31

  pressure. See atmospheric pressure

  pressure-dependent collisional broadening, 226

  pressure-independent Doppler broadening, 226

  primitive equation, 114

  principal component analysis (PCA), 578

 

‹ Prev