The Beginning of Infinity
Page 8
Similarly, whether humans could live entirely outside the biosphere – say, on the moon – does not depend on the quirks of human biochemistry. Just as humans currently cause over a tonne of vitamin C to appear in Oxfordshire every week (from their farms and factories), so they could do the same on the moon – and the same goes for breathable air, water, a comfortable temperature and all their other parochial needs. Those needs can all be met, given the right knowledge, by transforming other resources. Even with present-day technology, it would be possible to build a self-sufficient colony on the moon, powered by sunlight, recycling its waste, and obtaining raw materials from the moon itself. Oxygen is plentiful on the moon in the form of metal oxides in moon rock. Many other elements could easily be extracted too. Some elements are rare on the moon, and so in practice these would be supplied from the Earth, but in principle the colony could be entirely independent of the Earth if it sent robot space vehicles to mine asteroids for such elements, or if it manufactured them by transmutation.
I specified robot space vehicles because all technological knowledge can eventually be implemented in automated devices. This is another reason that ‘one per cent inspiration and ninety-nine per cent perspiration’ is a misleading description of how progress happens: the ‘perspiration’ phase can be automated – just as the task of recognizing galaxies on astronomical photographs was. And the more advanced technology becomes, the shorter is the gap between inspiration and automation. The more this happens in the moon colony, the less human effort will be required to live there. Eventually the moon colonists will take air for granted, just as the people now living in Oxfordshire take for granted that water will flow if they turn on a tap. If either of those populations lacked the right knowledge, their environment would soon kill them.
We are accustomed to thinking of the Earth as hospitable and the moon as a bleak, faraway deathtrap. But that is how our ancestors would have regarded Oxfordshire, and, ironically, it is how I, today, would regard the primeval Great Rift Valley. In the unique case of humans, the difference between a hospitable environment and a deathtrap depends on what knowledge they have created. Once enough knowledge has been embodied in the lunar colony, the colonists can devote their thoughts and energies to creating even more knowledge, and soon it will cease to be a colony and become simply home. No one will think of the moon as a fringe habitat, distinguished from our ‘natural’ environment on Earth, any more than we now think of Oxfordshire as being fundamentally different from the Great Rift Valley as a place to live.
Using knowledge to cause automated physical transformations is, in itself, not unique to humans. It is the basic method by which all organisms keep themselves alive: every cell is a chemical factory. The difference between humans and other species is in what kind of knowledge they can use (explanatory instead of rule-of-thumb) and in how they create it (conjecture and criticism of ideas, rather than the variation and selection of genes). It is precisely those two differences that explain why every other organism can function only in a certain range of environments that are hospitable to it, while humans transform inhospitable environments like the biosphere into support systems for themselves. And, while every other organism is a factory for converting resources of a fixed type into more such organisms, human bodies (including their brains) are factories for transforming anything into anything that the laws of nature allow. They are ‘universal constructors’.
This universality in the human condition is part of a broader phenomenon that I shall discuss in Chapter 6. We do not share it with any other species currently on Earth. But, since it is a consequence of the ability to create explanations, we do necessarily share it with any other people that might exist in the universe. The opportunities provided by the laws of nature for transforming resources are universal, and all entities with universal reach necessarily have the same reach.
A few species other than humans are known to be capable of having cultural knowledge. For example, some apes can discover new methods of cracking nuts, and pass that knowledge on to other apes. As I shall discuss in Chapter 16, the existence of such knowledge is suggestive of how ape-like species evolved into people. But it is irrelevant to the arguments of this chapter, because no such organism is capable of creating or using explanatory knowledge. Hence the cultural knowledge of such organisms is of essentially the same type as genetic knowledge, and does indeed have only a small and inherently limited reach. They are not universal constructors, but highly specialized ones. For them, the Haldane–Dawkins argument is valid: the world is stranger than they can conceive.
In some environments in the universe, the most efficient way for humans to thrive might be to alter their own genes. Indeed, we are already doing that in our present environment, to eliminate diseases that have in the past blighted many lives. Some people object to this on the grounds (in effect) that a genetically altered human is no longer human. This is an anthropomorphic mistake. The only uniquely significant thing about humans (whether in the cosmic scheme of things or according to any rational human criterion) is our ability to create new explanations, and we have that in common with all people. You do not become less of a person if you lose a limb in an accident; it is only if you lose your brain that you do. Changing our genes in order to improve our lives and to facilitate further improvements is no different in this regard from augmenting our skin with clothes or our eyes with telescopes.
One might wonder whether the reach of people in general might be greater than the reach of humans. What if, for instance, the reach of technology is indeed unlimited, but only to creatures with two opposable thumbs on each hand; or if the reach of scientific knowledge is unlimited, but only to beings whose brains are twice the size of ours? But our faculty of being universal constructors makes these issues as irrelevant as that of access to vitamins. If progress at some point were to depend on having two thumbs per hand, then the outcome would depend not on the knowledge we inherit in our genes, but on whether we could discover how to build robots, or gloves, with two thumbs per hand, or alter ourselves to have a second thumb. If it depends on having more memory capacity, or speed, than a human brain, then the outcome would depend on whether we could build computers to do the job. Again, such things are already commonplace in technology.
The astrophysicist Martin Rees has speculated that somewhere in the universe ‘there could be life and intelligence out there in forms we can’t conceive. Just as a chimpanzee can’t understand quantum theory, it could be there are aspects of reality that are beyond the capacity of our brains.’ But that cannot be so. For if the ‘capacity’ in question is mere computational speed and amount of memory, then we can understand the aspects in question with the help of computers – just as we have understood the world for centuries with the help of pencil and paper. As Einstein remarked, ‘My pencil and I are more clever than I.’ In terms of computational repertoire, our computers – and brains – are already universal (see Chapter 6). But if the claim is that we may be qualitatively unable to understand what some other forms of intelligence can – if our disability cannot be remedied by mere automation – then this is just another claim that the world is not explicable. Indeed, it is tantamount to an appeal to the supernatural, with all the arbitrariness that is inherent in such appeals, for if we wanted to incorporate into our world view an imaginary realm explicable only to superhumans, we need never have bothered to abandon the myths of Persephone and her fellow deities.
So human reach is essentially the same as the reach of explanatory knowledge itself. An environment is within human reach if it is possible to create an open-ended stream of explanatory knowledge there. That means that if knowledge of a suitable kind were instantiated in such an environment in suitable physical objects, it would cause itself to survive and would then continue to increase indefinitely. Can there really be such an environment? This is essentially the question that I asked at the end of the last chapter – can this creativity continue indefinitely? – and it is the question to which
the Spaceship Earth metaphor assumes a negative answer.
The issue comes down to this: if such an environment can exist, what are the minimal physical features that it must have? Access to matter is one. For example, the trick of extracting oxygen from moon rocks depends on having compounds of oxygen available. With more advanced technology, one could manufacture oxygen by transmutation; but, no matter how advanced one’s technology is, one still needs raw materials of some sort. And, although mass can be recycled, creating an open-ended stream of knowledge depends on having an ongoing supply of it, both to make up for inevitable inefficiencies and to make the additional memory capacity to store new knowledge as it is created.
Also, many of the necessary transformations require energy: something must power conjectures and scientific experiments and all those manufacturing processes; and, again, the laws of physics forbid the creation of energy from nothing. So access to an energy supply is also a necessity. To some extent, energy and mass can be transformed into each other. For instance, transmuting hydrogen into any other element releases energy through nuclear fusion. Energy can also be converted into mass by various subatomic processes (but I cannot imagine naturally occurring circumstances in which those would be the best way of obtaining matter).
In addition to matter and energy, there is one other essential requirement, namely evidence: the information needed to test scientific theories. The Earth’s surface is rich in evidence. We happened to get round to testing Newton’s laws in the seventeenth century, and Einstein’s in the twentieth, but the evidence with which we did that – light from the sky – had been deluging the surface of the Earth for billions of years before that, and will continue to do so for billions more. Even today we have barely begun to examine that evidence: on any clear night, the chances are that your roof will be struck by evidence falling from the sky which, if you only knew what to look for and how, would win you a Nobel prize. In chemistry, every stable element that exists anywhere is also present on or just below the Earth’s surface. In biology, copious evidence of the nature of life is ubiquitous in the biosphere – and within arm’s reach, in our own DNA. As far as we know, all the fundamental constants of nature can be measured here, and every fundamental law can be tested here. Everything needed for the open-ended creation of knowledge is here in abundance, in the Earth’s biosphere.
And the same is true of the moon. It has essentially the same resources of mass, energy and evidence as the Earth has. Parochial details differ, but the fact that humans living on the moon will have to make their own air is no more significant than the fact that laboratories on Earth have to make their own vacuum. Both tasks can be automated so as to require arbitrarily little human effort or attention. Likewise, because humans are universal constructors, every problem of finding or transforming resources can be no more than a transient factor limiting the creation of knowledge in a given environment. And therefore matter, energy and evidence are the only requirements that an environment needs to have in order to be a venue for open-ended knowledge creation.
Though any particular problem is a transient factor, the condition of having to solve problems in order to survive and continue to create knowledge is permanent. I have mentioned that there has never been an unproblematic time for humans; that applies as much to the future as to the past. Today on Earth, in the short run, there are still countless problems to be solved to eliminate even starvation and other forms of extreme human suffering that date back to prehistory. On a timescale of decades, we shall be faced with choices to make substantial modifications to the biosphere, or to keep it the same, or anything in between. Whichever option we choose, it will be a project of planet-wide control, requiring the creation of a great deal of scientific and technological knowledge as well as knowledge about how to make such decisions rationally (see Chapter 13). In the even longer run, it is not only our comfort and aesthetic sensibilities, and the suffering of individuals, that are problematic, but, as always, the survival of our species. For instance, at present during any given century there is about one chance in a thousand that the Earth will be struck by a comet or asteroid large enough to kill at least a substantial proportion of all human beings. That means that a typical child born in the United States today is more likely to die as a result of an astronomical event than a car accident. Both are very low-probability events, but, unless we create a great deal more scientific and technological knowledge than we have now, we shall have no defence against those and other forms of natural disaster that must, eventually, strike. Arguably there are more immediate existential threats too – see Chapter 9.
Setting up self-sufficient colonies on the moon and elsewhere in the solar system – and eventually in other solar systems – will be a good hedge against the extinction of our species or the destruction of civilization, and is a highly desirable goal for that reason among others. As Hawking has said:
I don’t think the human race will survive the next thousand years, unless we spread into space. There are too many accidents that can befall life on a single planet. But I’m an optimist. We will reach out to the stars.
Daily Telegraph, 16 October 2001
But even that will be far from an unproblematic state. And most people are not satisfied merely to be confident in the survival of the species: they want to survive personally. Also, like our earliest human ancestors, they want to be free from physical danger and suffering. In future, as various causes of suffering and death such as disease and ageing are successively addressed and eliminated, and human life spans increase, people will care about ever longer-term risks.
In fact people will always want still more than that: they will want to make progress. For, in addition to threats, there will always be problems in the benign sense of the word: errors, gaps, inconsistencies and inadequacies in our knowledge that we wish to solve – including, not least, moral knowledge: knowledge about what to want, what to strive for. The human mind seeks explanations; and now that we know how to find them, we are not going to stop voluntarily. Here is another misconception in the Garden of Eden myth: that the supposed unproblematic state would be a good state to be in. Some theologians have denied this, and I agree with them: an unproblematic state is a state without creative thought. Its other name is death.
All those kinds of problem (survival-related, progress-related, moral, and sheer-curiosity-driven problems) are connected. We can, for instance, expect that our ability to cope with existential threats will continue to depend on knowledge that was originally created for its own sake. And we can expect disagreements about goals and values always to exist, because, among other reasons, moral explanations depend partly on facts about the physical world. For instance, the moral stances in the Principle of Mediocrity and the Spaceship Earth idea depend on the physical world not being explicable in the sense that I have argued it must be.
Nor will we ever run out of problems. The deeper an explanation is, the more new problems it creates. That must be so, if only because there can be no such thing as an ultimate explanation: just as ‘the gods did it’ is always a bad explanation, so any other purported foundation of all explanations must be bad too. It must be easily variable because it cannot answer the question: why that foundation and not another? Nothing can be explained only in terms of itself. That holds for philosophy just as it does for science, and in particular it holds for moral philosophy: no utopia is possible, but only because our values and our objectives can continue to improve indefinitely.
Thus fallibilism alone rather understates the error-prone nature of knowledge-creation. Knowledge-creation is not only subject to error: errors are common, and significant, and always will be, and correcting them will always reveal further and better problems. And so the maxim that I suggested should be carved in stone, namely ‘The Earth’s biosphere is incapable of supporting human life’ is actually a special case of a much more general truth, namely that, for people, problems are inevitable. So let us carve that in stone:
It is inevitabl
e that we face problems, but no particular problem is inevitable. We survive, and thrive, by solving each problem as it comes up. And, since the human ability to transform nature is limited only by the laws of physics, none of the endless stream of problems will ever constitute an impassable barrier. So a complementary and equally important truth about people and the physical world is that problems are soluble. By ‘soluble’ I mean that the right knowledge would solve them. It is not, of course, that we can possess knowledge just by wishing for it; but it is in principle accessible to us. So let us carve that in stone too:
That progress is both possible and desirable is perhaps the quintessential idea of the Enlightenment. It motivates all traditions of criticism, as well as the principle of seeking good explanations. But it can be interpreted in two almost opposite ways, both of which, confusingly, are known as ‘perfectibility’. One is that humans, or human societies, are capable of attaining a state of supposed perfection – such as the Buddhist or Hindu ‘nirvana’, or various political utopias. The other is that every attainable state can be indefinitely improved. Fallibilism rules out that first position in favour of the second. Neither the human condition in particular nor our explanatory knowledge in general will ever be perfect, nor even approximately perfect. We shall always be at the beginning of infinity.