Book Read Free

The Beginning of Infinity

Page 51

by David Deutsch


  The knowledge that would have saved the Easter Islanders’ civilization has already been in our possession for centuries. A sextant would have allowed them to explore their ocean and bring back the seeds of new forests and of new ideas. Greater wealth, and a written culture, would have enabled them to recover after a devastating plague. But, most of all, they would have been better at solving problems of all kinds if they had known some of our ideas about how to do that, such as the rudiments of a scientific outlook. Such knowledge would not have guaranteed their welfare, any more than it guarantees ours. Nevertheless, the fact that their civilization failed for lack of what ours discovered long ago cannot be an ominous ‘warning of what the future could hold’ for us.

  This knowledge-based approach to explaining human events follows from the general arguments of this book. We know that achieving arbitrary physical transformations that are not forbidden by the laws of physics (such as replanting a forest) can only be a matter of knowing how. We know that finding out how is a matter of seeking good explanations. We also know that whether a particular attempt to make progress will succeed or not is profoundly unpredictable. It can be understood in retrospect, but not in terms of factors that could have been known in advance. Thus we now understand why alchemists never succeeded at transmutation: because they would have had to understand some nuclear physics first. But this could not have been known at the time. And the progress that they did make – which led to the science of chemistry – depended strongly on how individual alchemists thought, and only peripherally on factors like which chemicals could be found nearby. The conditions for a beginning of infinity exist in almost every human habitation on Earth.

  In his book Guns, Germs and Steel, the biogeographer Jared Diamond takes the opposite view. He proposes what he calls an ‘ultimate explanation’ of why human history was so different on different continents. In particular, he seeks to explain why it was Europeans who sailed out to conquer the Americas, Australasia and Africa and not vice versa. In Diamond’s view, the psychology and philosophy and politics of historical events are no more than ephemeral ripples on the great river of history. Its course is set by factors independent of human ideas and decisions. Specifically, he says, the continents on our planet had different natural resources – different geographies, plants, animals and micro-organisms – and, details aside, that is what explains the broad sweep of history, including which human ideas were created and what decisions were made, politics, philosophy, cutlery and all.

  For example, part of his explanation of why the Americas never developed a technological civilization before the advent of Europeans is that there were no animals there suitable for domestication as beasts of burden.

  Llamas are native to South America, and have been used as beasts of burden since prehistoric times, so Diamond points out that they are not native to the continent as a whole, but only to the Andes mountains. Why did no technological civilization arise in the Andes mountains? Why did the Incan Empire not have an Enlightenment? Diamond’s position is that other biogeographical factors were unfavourable.

  The communist thinker Friedrich Engels proposed the same ultimate explanation of history, and made the same proviso about llamas, in 1884:

  The Eastern Hemisphere . . . possessed nearly all the animals adaptable to domestication . . . The Western Hemisphere, America, had no mammals that could be domesticated except the llama, which, moreover, was only found in one part of South America . . . Owing to these differences in natural conditions, the population of each hemisphere now goes on its own way . . .

  The Origin of the Family, Private Property and the State

  (Friedrich Engels, based on notes by Karl Marx)

  But why did llamas continue to be ‘only found in one part of South America’, if they could have been useful elsewhere? Engels did not address that issue. But Diamond realized that it ‘cries out for explanation’. Because, unless the reason that llamas were not exported was itself biogeographical, Diamond’s ‘ultimate explanation’ is false. So he proposed a biogeographical reason: he pointed out that a hot, lowland region, unsuitable for llamas, separates the Andes from the highlands of Central America where llamas would have been useful in agriculture.

  But, again, why must such a region have been a barrier to the spread of domesticated llamas? Traders travelled between South and Central America for centuries, perhaps overland and certainly by sea. Where there are long-range traders, it is not necessary for an idea to be useful in an unbroken line of places for it to be able to spread. As I remarked in Chapter 11, knowledge has the unique ability to take aim at a distant target and utterly transform it while having scarcely any effect on the space between. So, what would it have taken for some of those traders to take some llamas north for sale? Only the idea: the leap of imagination to guess that if something is useful here, it might be useful there too. And the boldness to take the speculative and physical risk. Polynesian traders did exactly that. They ranged further, across a more formidable natural barrier, carrying goods including livestock. Why did none of the South American traders ever think of selling llamas to the Central Americans? We may never know – but why should it have had anything to do with geography? They may simply have been too set in their ways. Perhaps innovative uses for animals were taboo. Perhaps such a trade was attempted, but failed every time because of sheer bad luck. But, whatever the reason was, it cannot have been that the hot region constituted a physical barrier, for it did not.

  Those are the parochial considerations. The bigger picture is that the spread of llamas can only have been prevented by people’s ideas and outlook. Had the Andeans had a Polynesian outlook instead, llamas might have spread all over the Americas. Had the ancient Polynesians not had that outlook, they might never have settled Polynesia in the first place, and biogeographical explanations would now be referring to the great ocean barrier as the ‘ultimate explanation’ for that. If the Polynesians had been even better at long-range trading, they might have managed to transport horses from Asia to their islands and thence to South America – a feat perhaps no more impressive than Hannibal’s transporting elephants across the Alps. If the ancient Greek enlightenment had continued, Athenians might have been the first to settle the Pacific islands and they would now be the ‘Polynesians’. Or, if the early Andeans had worked out how to breed giant war llamas and had ridden out to explore and conquer before anyone else had even thought of domesticating the horse, South American biogeographers might now be explaining that their ancestors colonized the world because no other continent had llamas.

  Moreover, the Americas had not always lacked large quadrupeds. When the first humans arrived there, many species of ‘mega-fauna’ were common, including wild horses, mammoths, mastodons and other members of the elephant family. According to some theories, the humans hunted them to extinction. What would have happened if one of those hunters had had a different idea: to ride the beast before killing it? Generations later, the knock-on effects of that bold conjecture might have been tribes of warriors on horses and mammoths pouring back through Alaska and re-conquering the Old World. Their descendants would now be attributing this to the geographical distribution of mega-fauna. But the real cause would have been that one idea in the mind of that one hunter.

  In early prehistory, populations were tiny, knowledge was parochial, and history-making ideas were millennia apart. In those days, a meme spread only when one person observed another enacting it nearby, and (because of the staticity of cultures) rarely even then. So at that time human behaviour resembled that of other animals, and much of what happened was indeed explained by biogeography. But developments such as abstract language, explanation, wealth above the level of subsistence, and long-range trade all had the potential to erode parochialism and hence to give causal power to ideas. By the time history began to be recorded, it had long since become the history of ideas far more than anything else – though unfortunately the ideas were still mainly of the self-disabling, anti-rational vari
ety. As for subsequent history, it would take considerable dedication to insist that biogeographical explanations account for the broad sweep of events. Why, for instance, did the societies in North America and Western Europe, rather than Asia and Eastern Europe, win the Cold War? Analysing climate, minerals, flora, fauna and diseases can teach us nothing about that. The explanation is that the Soviet system lost because its ideology wasn’t true, and all the biogeography in the world cannot explain what was false about it.

  Coincidentally, one of the things that was most false about the Soviet ideology was the very idea that there is an ultimate explanation of history in mechanical, non-human terms, as proposed by Marx, Engels and Diamond. Quite generally, mechanical reinterpretations of human affairs not only lack explanatory power, they are morally wrong as well, for in effect they deny the humanity of the participants, casting them and their ideas merely as side effects of the landscape. Diamond says that his main reason for writing Guns, Germs and Steel was that, unless people are convinced that the relative success of Europeans was caused by biogeography, they will for ever be tempted by racist explanations. Well, not readers of this book, I trust! Presumably Diamond can look at ancient Athens, the Renaissance, the Enlightenment – all of them the quintessence of causation through the power of abstract ideas – and see no way of attributing those events to ideas and to people; he just takes it for granted that the only alternative to one reductionist, dehumanizing reinterpretation of events is another.

  In reality, the difference between Sparta and Athens, or between Savonarola and Lorenzo de’ Medici, had nothing to do with their genes; nor did the difference between the Easter Islanders and the imperial British. They were all people – universal explainers and constructors. But their ideas were different. Nor did landscape cause the Enlightenment. It would be much truer to say that the landscape we live in is the product of ideas. The primeval landscape, though packed with evidence and therefore opportunity, contained not a single idea. It is knowledge alone that converts landscapes into resources, and humans alone who are the authors of explanatory knowledge and hence of the uniquely human behaviour called ‘history’.

  Physical resources such as plants, animals and minerals afford opportunities, which may inspire new ideas, but they can neither create ideas nor cause people to have particular ideas. They also cause problems, but they do not prevent people from finding ways to solve those problems. Some overwhelming natural event like a volcanic eruption might have wiped out an ancient civilization regardless of what the victims were thinking, but that sort of thing is exceptional. Usually, if there are human beings left alive to think, there are ways of thinking that can improve their situation, and then improve it further. Unfortunately, as I have explained, there are also ways of thinking that can prevent all improvement. Thus, since the beginning of civilization and before, both the principal opportunities for progress and the principal obstacles to progress have consisted of ideas alone. These are the determinants of the broad sweep of history. The primeval distribution of horses or llamas or flint or uranium can affect only the details, and then only after some human being has had an idea for how to use those things. The effects of ideas and decisions almost entirely determine which biogeographical factors have a bearing on the next chapter of human history, and what that effect will be. Marx, Engels and Diamond have it the wrong way round.

  A thousand years is a long time for a static society to survive. We think of the great centralized empires of antiquity which lasted even longer; but that is a selection effect: we have no record of most static societies, and they must have been much shorter-lived. A natural guess is that most were destroyed by the first challenge that would have required the creation of a significantly new pattern of behaviour. The isolated location of Easter Island, and the relatively hospitable nature of its environment, might have given its static society a longer lifespan than it would have had if it had been exposed to more tests by nature and by other societies. But even those factors are still largely human, not biogeographical: if the islanders had known how to make long-range ocean voyages, the island would not have been ‘isolated’ in the relevant sense. Likewise, how ‘hospitable’ Easter Island is depends on what the inhabitants know. If its settlers had known as little about survival techniques as I do, then they would not have survived their first week on the island. And, on the other hand, today thousands of people live on Easter Island without starving and without a forest – though now they are planting one because they want to and know how.

  The Easter Island civilization collapsed because no human situation is free of new problems, and static societies are inherently unstable in the face of new problems. Civilizations rose and collapsed on other South Pacific islands too – including Pitcairn Island. That was part of the broad sweep of history in the region. And, in the big picture, the cause was that they all had problems that they failed to solve. The Easter Islanders failed to navigate their way off the island, just as the Romans failed to solve the problem of how to change governments peacefully. If there was a forestry disaster on Easter Island, that was not what brought its inhabitants down: it was that they were chronically unable to solve the problem that this raised. If that problem had not dispatched their civilization, some other problem eventually would have. Sustaining their civilization in its static, statue-obsessed state was never an option. The only options were whether it would collapse suddenly and painfully, destroying most of what little knowledge they had, or change slowly and for the better. Perhaps they would have chosen the latter if only they had known how.

  We do not know what horrors the Easter Island civilization perpetrated in the course of preventing progress. But apparently its fall did not improve anything. Indeed, the fall of tyranny is never enough. The sustained creation of knowledge depends also on the presence of certain kinds of idea, particularly optimism, and an associated tradition of criticism. There would have to be social and political institutions that incorporated and protected such traditions: a society in which some degree of dissent and deviation from the norm was tolerated, and whose educational practices did not entirely extinguish creativity. None of that is trivially achieved. Western civilization is the current consequence of achieving it – which is why, as I said, it already has what it takes to avoid an Easter Island disaster. If it really is facing a crisis, it must be some other crisis. If it ever collapses, it will be in some other way and if it needs to be saved, it will have to be by its own, unique methods.

  In 1971, while I was still at school, I attended a lecture for high-school students entitled ‘Population, Resources, Environment’. It was given by the population scientist Paul Ehrlich. I do not remember what I was expecting – I don’t think I had ever heard of ‘the environment’ before – but nothing had prepared me for such a bravura display of raw pessimism. Ehrlich starkly described to his young audience the living hell we would be inheriting. Half a dozen varieties of resource-management catastrophe were just around the corner, and it was already too late to avoid some of them. People would be starving to death by the billion in ten years, twenty at best. Raw materials were running out: the Vietnam War, then in progress, was a last-ditch struggle for the region’s tin, rubber and petroleum. (Notice how his biogeographical explanation blithely shrugged off the political disagreements that were in fact causing the conflict.) The troubles of the day in American inner cities, rising crime, mental illness – all were part of the same great catastrophe. All were linked by Ehrlich to overpopulation, pollution and the reckless overuse of finite resources: we had created too many power stations and factories, and mines, and intensive farms – too much economic growth, far more than the planet could sustain. And, worst of all, too many people – the ultimate source of all the other ills. In this respect, Ehrlich was following in the footsteps of Malthus, making the same error: setting predictions of one process against prophecies of another. Thus he calculated that, if the United States was to sustain even its 1971 standard of living, it would have to reduce
its population by three-quarters, to 50 million – which was of course impossible in the time available. The planet as a whole was overpopulated by a factor of seven, he said. Even Australia was nearing its maximum sustainable population. And so on.

  We had little basis for doubting what the professor was telling us about the field he was studying. Yet for some reason our conversation afterwards was not that of a group of students who had just had their futures stolen. I do not know about the others, but I can remember when I stopped worrying. At the end of the lecture a girl asked Ehrlich a question. I have forgotten the details, but it had the form ‘What if we solve [one of the problems that Ehrlich had described] within the next few years? Wouldn’t that affect your conclusion?’ Ehrlich’s reply was brisk. How could we possibly solve it? (She did not know.) And, even if we did, how could that do more than briefly delay the catastrophe? And what would we do then?

  What a relief! Once I realized that Ehrlich’s prophesies amounted to saying, ‘If we stop solving problems, we are doomed,’ I no longer found them shocking, for how could it be otherwise? Quite possibly that girl went on to solve the very problem she asked about, and the one after it. At any rate, someone must have, because the catastrophe scheduled for 1991 has still not materialized. Nor have any of the others that Ehrlich foretold.

 

‹ Prev