Elon Musk
Page 14
In November 2005, about six months after they had first gotten to the island, the SpaceX team felt ready to give launching a shot. Musk flew in with his brother, Kimbal, and joined the majority of the SpaceX team in the barracks on Kwaj. On November 26, a handful of people woke up at 3 A.M. and filled the rocket with liquid oxygen. They then scampered off to an island about three miles away for protection, while the rest of the SpaceX team monitored the launch systems from a control room twenty-six miles away on Kwaj. The military gave SpaceX a six-hour launch window. Everyone was hoping to see the first stage take off and reach about 6,850 miles per hour before giving way to the second stage, which would ignite up in the air and reach 17,000 miles per hour. But, while going through the pre-launch checks, the engineers detected a major problem: a valve on a liquid oxygen tank would not close, and the LOX was boiling off into the air at 500 gallons per hour. SpaceX scrambled to fix the issue but lost too much of its fuel to launch before the window closed.
With that mission aborted, SpaceX ordered major LOX reinforcements from Hawaii and prepared for another attempt in mid-December. High winds, faulty valves, and other errors thwarted that launch attempt. Before another attempt could be made, SpaceX discovered on a Saturday night that the rocket’s power distribution systems had started malfunctioning and would need new capacitors. On Sunday morning, the rocket was lowered and split into its two stages so that a technician could slide in and remove the electrical boards. Someone found an electronics supplier that was open on Sunday in Minnesota, and off a SpaceX employee flew to get some fresh capacitors. By Monday he was in California and testing the parts at SpaceX’s headquarters to make sure they passed various heat and vibration checks, then on a plane again back to the islands. In under eighty hours, the electronics had been returned in working order and installed in the rocket. The dash to the United States and back showed that SpaceX’s thirty-person team had real pluck in the face of adversity and inspired everyone on the island. A traditional three-hundred-person-strong aerospace launch crew would never have tried to fix a rocket like that on the fly. But the energy, smarts, and resourcefulness of the SpaceX team still could not overcome their inexperience or the difficult conditions. More problems arose and blocked any thoughts of a launch.
Finally, on March 24, 2006, it was all systems go. The Falcon 1 stood on its square launchpad and ignited. It soared into the sky, turning the island below it into a green spec amid a vast, blue expanse. In the control room, Musk paced as he watched the action, wearing shorts, flip-flops, and a T-shirt. Then, about twenty-five seconds in, it became clear that all was not well. A fire broke out above the Merlin engine and suddenly this machine that had been flying straight and true started to spin and then tumble uncontrollably back to Earth. The Falcon 1 ended up falling directly down onto the launch site. Most of the debris went into a reef 250 feet from the launchpad, and the satellite cargo smashed through SpaceX’s machine shop roof and landed more or less intact on the floor. Some of the engineers put on their snorkeling and scuba gear and recovered the pieces, fitting all of the rocket’s remnants into two refrigerator-sized crates. “It is perhaps worth noting that those launch companies that succeeded also took their lumps along the way,” Musk wrote in a postmortem. “A friend of mine wrote to remind me that only 5 of the first 9 Pegasus launches succeeded; 3 of 5 for Ariane; 9 of 20 for Atlas; 9 of 21 for Soyuz; and 9 of 18 for Proton. Having experienced firsthand how hard it is to reach orbit, I have a lot of respect for those that persevered to produce the vehicles that are mainstays of space launch today.” Musk closed the letter writing, “SpaceX is in this for the long haul and, come hell or high water, we are going to make this work.”
Musk and other SpaceX executives blamed the crash on an unnamed technician. They said this technician had done some work on the rocket one day before the launch and failed to properly tighten a fitting on a fuel pipe, which caused the fitting to crack. The fitting in question was something basic—an aluminum b-nut that’s often used to connect a pair of tubes. The technician was Hollman. In the aftermath of the rocket crash, Hollman flew to Los Angeles to confront Musk directly. He’d spent years working day and night on the Falcon 1 and felt enraged that Musk had called out him and his team in public. Hollman knew that he’d fastened the b-nut correctly and that observers from NASA had been looking over his shoulder to check the work. When Hollman charged into SpaceX’s headquarters with a head full of fury, Mary Beth Brown tried to calm him and stop him from seeing Musk. Hollman kept going anyway, and the two of them proceeded to have a shouting match at Musk’s cubicle.
After all the debris was analyzed, it turned out that the b-nut had almost certainly cracked due to corrosion from the months in Kwaj’s salty atmosphere. “The rocket was literally crusted with salt on one side, and you had to scrape it off,” Mueller said. “But we had done a static fire three days earlier, and everything was fine.” SpaceX had tried to save about fifty pounds of weight by using aluminum components instead of stainless steel. Thompson, the former marine, had seen the aluminum parts work just fine in helicopters that sat on aircraft carriers, and Mueller had seen aircraft resting outside of Cape Canaveral for forty years with aluminum b-nuts in fine condition. Years later, a number of SpaceX’s executives still agonize over the way Hollman and his team were treated. “They were our best guys, and they kind of got blamed to get an answer out to the world,” Mueller said. “That was really bad. We found out later that it was dumb luck.”*
After the crash, there was a lot of drinking at a bar on the main island. Musk wanted to launch again within six months, but putting together a new machine would again require an immense amount of work. SpaceX had some pieces for the vehicle ready in El Segundo but certainly not a ready-to-fire rocket. As they downed drinks, the engineers vowed to take a more disciplined approach with their next craft and to work better as a collective. Worden hoped the SpaceX engineers would raise their game as well. He’d been observing them for the Defense Department and loved the energy of the young engineers but not their methodology. “It was being done like a bunch of kids in Silicon Valley would do software,” Worden said. “They would stay up all night and try this and try that. I’d seen hundreds of these types of operations, and it struck me that it wouldn’t work.” Leading up to the first launch, Worden tried to caution Musk, sending a letter to him and the director of DARPA, the research arm of the Defense Department, that made his views clear. “Elon didn’t react well. He said, ‘What do you know? You’re just an astronomer,’” Worden said. But, after the rocket blew up, Musk recommended that Worden perform an investigation for the government. “I give Elon huge credit for that,” Worden said.
Almost exactly a year later, SpaceX was ready to try another launch. On March 15, 2007, a successful test fire took place. Then, on March 21, the Falcon 1 finally behaved. From its launchpad surrounded by palm trees, the Falcon 1 surged up and toward space. It flew for a couple of minutes with engineers now and again reporting that the systems were “nominal,” or in good shape. At three minutes into the flight, the first stage of the rocket separated and fell back to Earth, and the Kestrel engine kicked in as planned to carry the second stage into orbit. Ecstatic cheers went out in the control room. Next, at the four-minute mark, the fairing atop the rocket separated as planned. “It was doing exactly what it was supposed to do,” said Mueller. “I was sitting next to Elon and looked at him and said, ‘We’ve made it.’ We’re hugging and believe it’s going to make it to orbit. Then, it starts to wiggle.” For more than five glorious minutes, the SpaceX engineers got to feel like they had done everything right. A camera on board the Falcon 1 pointed down and showed Earth getting smaller and smaller as the rocket made its way methodically into space. But then that wiggle that Mueller noticed turned into flailing, and the machine swooned, started to break apart, and then blew up. This time the SpaceX engineers were quick to figure out what went wrong. As the propellant was consumed, what was left started to move around the tank and slosh agains
t the sides, much like wine spinning around a glass. The sloshing propellant triggered the wobbling, and at one point it sloshed enough to leave an opening to the engine exposed. When the engine sucked in a big breath of air, it flamed out.
The failure was another crushing blow to SpaceX’s engineers. Some of them had spent close to two years shuffling back and forth between California, Hawaii, and Kwaj. By the time SpaceX could attempt another launch, it would be about four years after Musk’s original target, and the company had been chewing through his Internet fortune at a worrying rate. Musk had vowed publicly that he would see this thing through to the end, but people inside and outside the company were doing back-of-the-envelope math and could tell that SpaceX likely could only afford one more attempt—maybe two. To the extent that the financial situation unnerved Musk, he rarely if ever let it show to employees. “Elon did a great job of not burdening people with those worries,” said Spikes. “He always communicated the importance of being lean and of success, but it was never ‘if we fail, we’re done for.’ He was very optimistic.”
The failures seemed to do little to curtail Musk’s vision for the future or raise doubts about his capabilities. In the midst of the chaos, he took a tour of the islands with Worden. Musk began thinking aloud about how the islands could be unified into one landmass. He suggested that walls could be built through the small channels between the islands, and the water could be pumped out in the spirit of the manmade systems in the Netherlands. Worden, also known for his out-there ideas, was attracted to Musk’s bravado. “That he is thinking of this stuff is kind of cool,” Worden said. “From that point on, he and I discussed settling Mars. It really impressed me that this is a guy that thinks big.”
PHOTOGRAPHIC INSERT
The Haldeman children had lots of downtime in the African bush while on wild adventures with their parents. ©Maye Musk
As a toddler, Musk would often drift off into his own world and ignore those around him. Doctors theorized that he might be hard of hearing and had his adenoid glands removed. ©Maye Musk
Musk was a loner throughout grade school and suffered for years at the hands of bullies. ©Maye Musk
Musk’s original video-game code for Blastar, the game he wrote as a twelve-year-old and published in a local magazine. ©Maye Musk
(From left to right:) Elon, Kimbal, and Tosca at their house in South Africa. All three children now live in the United States. ©Maye Musk
Musk ran away on his own to Canada and ended up at Queen’s University in Ontario, living in a dormitory for foreign students. ©Maye Musk
J. B. Straubel puts together one of Tesla Motors’ early battery packs at his house. Photograph courtesy of Tesla Motors
A handful of engineers built the first Tesla Roadster in a Silicon Valley warehouse that they had turned into a garage workshop and research lab. Photograph courtesy of Tesla Motors
Musk and Martin Eberhard prepare to take the early Roadster for a test-drive. The relationship between the two men would fall apart in the years to come. Photograph courtesy of Tesla Motors
SpaceX built its rocket factory from the ground up in a Los Angeles warehouse to give birth to the Falcon 1 rocket. Photograph courtesy of SpaceX
Tom Mueller (far right, gray shirt) led the design, testing, and construction of SpaceX’s engines. Photograph courtesy of SpaceX
SpaceX had to conduct its first flights from Kwajalein Atoll (or Kwaj) in the Marshall Islands. The island experience was a difficult but ultimately fruitful adventure for the engineers. Photograph courtesy of SpaceX
SpaceX built a mobile mission-control trailer, and Musk and Mueller used it to monitor the later launches from Kwaj. Photograph courtesy of SpaceX
Musk hired Franz von Holzhausen in 2008 to design the Tesla Model S. The two men speak almost every day, as can be seen in this meeting in Musk’s SpaceX cubicle. ©Steve Jurvetson
SpaceX’s ambitions grew over the years to include the construction of the Dragon capsule, which could take people to the International Space Station and beyond. ©Steve Jurvetson
Musk has long had a thing for robots and is always evaluating new machines for both the SpaceX and Tesla factories. ©Steve Jurvetson
When SpaceX moved to a new factory in Hawthorne, California, it was able to scale out its assembly line and work on multiple rockets and capsules at the same time. ©Steve Jurvetson
SpaceX tests new engines and crafts at a site in McGregor, Texas. Here the company is testing a reusable rocket, code-named “Grasshopper,” that can land itself. Photograph courtesy of SpaceX
Musk has a tradition of visiting Dairy Queen ahead of test flights in Texas, in this case with SpaceX investor and board member Steve Jurvetson (left) and fellow investor Randy Glein (right). ©Steve Jurvetson
With a Dragon capsule hanging overhead, SpaceX employees peer into the company’s mission control center at the Hawthorne factory. Photograph courtesy of SpaceX
Gwynne Shotwell is Musk’s right-hand woman at SpaceX and oversees the day-to-day operations of the company, including monitoring a launch from mission control. Photograph courtesy of SpaceX
Tesla took over the New United Motor Manufacturing Inc. (or NUMMI) car factory in Fremont, California, which is where workers produce the Model S sedan. Photograph courtesy of Tesla Motors
Tesla began shipping the Model S sedan in 2012. The car ended up winning most of the automotive industry’s major awards. Photograph courtesy of Tesla Motors
The Tesla Model S sedan with its electric motor (near the rear) and battery pack (bottom) exposed. Photograph courtesy of Tesla Motors
Tesla’s next car will be the Model X SUV with its signature “falcon-wing doors.” Photograph courtesy of Tesla Motors
In 2013, Musk visited Cuba with Sean Penn (driving) and the investor Shervin Pishevar (back seat next to Musk). They met with students and members of the Castro family, and tried to free an American prisoner. ©Shervin Pishevar
Musk unveiled the Hyperloop in 2013. He proposed it as a new mode of transportation, and multiple groups have now set to work on building it. Photograph courtesy of SpaceX
In 2014, Musk unveiled a radical new take on the space capsule—the Dragon V2. It comes with a drop-down touch-screen display and slick interior. Photograph courtesy of SpaceX
The Dragon V2 will be able to return to Earth and land with pinpoint accuracy. Photograph courtesy of SpaceX
Musk is a nonstop traveler. Here’s a look at one year in his life via records obtained through a Freedom of Information Act request.
Musk married, divorced, remarried, and then divorced the actress Talulah Riley. Photograph courtesy of Talulah Riley
Musk and Riley relax at home in Los Angeles. Musk shares the home with his five young boys. Photograph courtesy of Talulah Riley
7
ALL ELECTRIC
J. B. STRAUBEL HAS A TWO-INCH-LONG SCAR that cuts across the middle of his left cheek. He earned it in high school, during a chemistry class experiment. Straubel whipped up the wrong concoction of chemicals, and the beaker he was holding exploded, throwing off shards of glass, one of which sliced through his face.
The wound lingers as a tinkerer’s badge of honor. It arrived near the end of a childhood full of experimentation with chemicals and machines. Born in Wisconsin, Straubel constructed a large chemistry lab in the basement of his family’s home that included fume hoods and chemicals ordered, borrowed, or pilfered. At thirteen, Straubel found an old golf cart at the dump. He brought it back home and restored it to working condition, which required him to rebuild the electric motor. It seemed that Straubel was always taking something apart, sprucing it up, and putting it back together. All of this fit into the Straubel family’s do-it-yourself traditions. In the late 1890s Straubel’s great-grandfather started the Straubel Machine Company, which built one of the first internal combustion engines in the United States and used it to power boats.
Straubel’s inquisitive spirit carried him west to Stanford University, where
he enrolled in 1994 intending to become a physicist. After flying through the hardest courses he could take, Straubel concluded that majoring in physics would not be for him. The advanced courses were too theoretical, and Straubel liked to get his hands dirty. He developed his own major called energy systems and engineering. “I wanted to take software and electricity and use it to control energy,” Straubel said. “It was computing combined with power electronics. I collected all the things I love doing in one place.”
There was no clean-technology movement at this time, but there were companies dabbling with new uses for solar power and electric vehicles. Straubel ended up hunting down these startups, hanging out in their garages and pestering the engineers. He began tinkering once again on his own as well in the garage of a house he shared with a half dozen friends. Straubel bought a “piece of shit Porsche” for $1,600 and turned it into an electric car. This meant that Straubel had to create a controller to manage the electric motor, build a charger from scratch, and write the software that made the entire machine work. The car set the world record for electric vehicle (EV) acceleration, traveling a quarter mile in 17.28 seconds. “The thing I took away was that the electronics were great, and you could get acceleration on a shoestring budget, but the batteries sucked,” Straubel said. “It had a thirty-mile range, so I learned firsthand about some of the limitations of electric vehicles.” Straubel gave his car a hybrid boost, building a gasoline-powered contraption that could be towed behind the Porsche and used to recharge the batteries. It was good enough for Straubel to drive the four hundred miles down to Los Angeles and back.