A Short History of Nearly Everything
Page 28
The impulse of the atmosphere to seek equilibrium was first suspected by Edmond Halley--the man who was everywhere--and elaborated upon in the eighteenth century by his fellow Briton George Hadley, who saw that rising and falling columns of air tended to produce "cells" (known ever since as "Hadley cells"). Though a lawyer by profession, Hadley had a keen interest in the weather (he was, after all, English) and also suggested a link between his cells, the Earth's spin, and the apparent deflections of air that give us our trade winds. However, it was an engineering professor at the École Polytechnique in Paris, Gustave-Gaspard de Coriolis, who worked out the details of these interactions in 1835, and thus we call it the Coriolis effect. (Coriolis's other distinction at the school was to introduce watercoolers, which are still known there as Corios, apparently.) The Earth revolves at a brisk 1,041 miles an hour at the equator, though as you move toward the poles the rate slopes off considerably, to about 600 miles an hour in London or Paris, for instance. The reason for this is self-evident when you think about it. If you are on the equator the spinning Earth has to carry you quite a distance--about 40,000 kilometers--to get you back to the same spot. If you stand beside the North Pole, however, you may need travel only a few feet to complete a revolution, yet in both cases it takes twenty-four hours to get you back to where you began. Therefore, it follows that the closer you get to the equator the faster you must be spinning.
The Coriolis effect explains why anything moving through the air in a straight line laterally to the Earth's spin will, given enough distance, seem to curve to the right in the northern hemisphere and to the left in the southern as the Earth revolves beneath it. The standard way to envision this is to imagine yourself at the center of a large carousel and tossing a ball to someone positioned on the edge. By the time the ball gets to the perimeter, the target person has moved on and the ball passes behind him. From his perspective, it looks as if it has curved away from him. That is the Coriolis effect, and it is what gives weather systems their curl and sends hurricanes spinning off like tops. The Coriolis effect is also why naval guns firing artillery shells have to adjust to left or right; a shell fired fifteen miles would otherwise deviate by about a hundred yards and plop harmlessly into the sea.
Considering the practical and psychological importance of the weather to nearly everyone, it's surprising that meteorology didn't really get going as a science until shortly before the turn of the nineteenth century (though the term meteorology itself had been around since 1626, when it was coined by a T. Granger in a book of logic).
Part of the problem was that successful meteorology requires the precise measurement of temperatures, and thermometers for a long time proved more difficult to make than you might expect. An accurate reading was dependent on getting a very even bore in a glass tube, and that wasn't easy to do. The first person to crack the problem was Daniel Gabriel Fahrenheit, a Dutch maker of instruments, who produced an accurate thermometer in 1717. However, for reasons unknown he calibrated the instrument in a way that put freezing at 32 degrees and boiling at 212 degrees. From the outset this numeric eccentricity bothered some people, and in 1742 Anders Celsius, a Swedish astronomer, came up with a competing scale. In proof of the proposition that inventors seldom get matters entirely right, Celsius made boiling point zero and freezing point 100 on his scale, but that was soon reversed.
The person most frequently identified as the father of modern meteorology was an English pharmacist named Luke Howard, who came to prominence at the beginning of the nineteenth century. Howard is chiefly remembered now for giving cloud types their names in 1803. Although he was an active and respected member of the Linnaean Society and employed Linnaean principles in his new scheme, Howard chose the rather more obscure Askesian Society as the forum to announce his new system of classification. (The Askesian Society, you may just recall from an earlier chapter, was the body whose members were unusually devoted to the pleasures of nitrous oxide, so we can only hope they treated Howard's presentation with the sober attention it deserved. It is a point on which Howard scholars are curiously silent.)
Howard divided clouds into three groups: stratus for the layered clouds, cumulus for the fluffy ones (the word means "heaped" in Latin), and cirrus (meaning "curled") for the high, thin feathery formations that generally presage colder weather. To these he subsequently added a fourth term, nimbus (from the Latin for "cloud"), for a rain cloud. The beauty of Howard's system was that the basic components could be freely recombined to describe every shape and size of passing cloud--stratocumulus, cirrostratus, cumulocongestus, and so on. It was an immediate hit, and not just in England. The poet Johann von Goethe in Germany was so taken with the system that he dedicated four poems to Howard.
Howard's system has been much added to over the years, so much so that the encyclopedic if little read International Cloud Atlas runs to two volumes, but interestingly virtually all the post-Howard cloud types--mammatus, pileus, nebulosis, spissatus, floccus, and mediocris are a sampling--have never caught on with anyone outside meteorology and not terribly much there, I'm told. Incidentally, the first, much thinner edition of that atlas, produced in 1896, divided clouds into ten basic types, of which the plumpest and most cushiony-looking was number nine, cumulonimbus. * 32 That seems to have been the source of the expression "to be on cloud nine."
For all the heft and fury of the occasional anvil-headed storm cloud, the average cloud is actually a benign and surprisingly insubstantial thing. A fluffy summer cumulus several hundred yards to a side may contain no more than twenty-five or thirty gallons of water--"about enough to fill a bathtub," as James Trefil has noted. You can get some sense of the immaterial quality of clouds by strolling through fog--which is, after all, nothing more than a cloud that lacks the will to fly. To quote Trefil again: "If you walk 100 yards through a typical fog, you will come into contact with only about half a cubic inch of water--not enough to give you a decent drink." In consequence, clouds are not great reservoirs of water. Only about 0.035 percent of the Earth's fresh water is floating around above us at any moment.
Depending on where it falls, the prognosis for a water molecule varies widely. If it lands in fertile soil it will be soaked up by plants or reevaporated directly within hours or days. If it finds its way down to the groundwater, however, it may not see sunlight again for many years--thousands if it gets really deep. When you look at a lake, you are looking at a collection of molecules that have been there on average for about a decade. In the ocean the residence time is thought to be more like a hundred years. Altogether about 60 percent of water molecules in a rainfall are returned to the atmosphere within a day or two. Once evaporated, they spend no more than a week or so--Drury says twelve days--in the sky before falling again as rain.
Evaporation is a swift process, as you can easily gauge by the fate of a puddle on a summer's day. Even something as large as the Mediterranean would dry out in a thousand years if it were not continually replenished. Such an event occurred a little under six million years ago and provoked what is known to science as the Messinian Salinity Crisis. What happened was that continental movement closed the Strait of Gibraltar. As the Mediterranean dried, its evaporated contents fell as freshwater rain into other seas, mildly diluting their saltiness--indeed, making them just dilute enough to freeze over larger areas than normal. The enlarged area of ice bounced back more of the Sun's heat and pushed Earth into an ice age. So at least the theory goes.
What is certainly true, as far as we can tell, is that a little change in the Earth's dynamics can have repercussions beyond our imagining. Such an event, as we shall see a little further on, may even have created us.
Oceans are the real powerhouse of the planet's surface behavior. Indeed, meteorologists increasingly treat oceans and atmosphere as a single system, which is why we must give them a little of our attention here. Water is marvelous at holding and transporting heat. Every day, the Gulf Stream carries an amount of heat to Europe equivalent to the world's output of coal fo
r ten years, which is why Britain and Ireland have such mild winters compared with Canada and Russia.
But water also warms slowly, which is why lakes and swimming pools are cold even on the hottest days. For that reason there tends to be a lag in the official, astronomical start of a season and the actual feeling that that season has started. So spring may officially start in the northern hemisphere in March, but it doesn't feel like it in most places until April at the very earliest.
The oceans are not one uniform mass of water. Their differences in temperature, salinity, depth, density, and so on have huge effects on how they move heat around, which in turn affects climate. The Atlantic, for instance, is saltier than the Pacific, and a good thing too. The saltier water is the denser it is, and dense water sinks. Without its extra burden of salt, the Atlantic currents would proceed up to the Arctic, warming the North Pole but depriving Europe of all that kindly warmth. The main agent of heat transfer on Earth is what is known as thermohaline circulation, which originates in slow, deep currents far below the surface--a process first detected by the scientist-adventurer Count von Rumford in 1797. * 33 What happens is that surface waters, as they get to the vicinity of Europe, grow dense and sink to great depths and begin a slow trip back to the southern hemisphere. When they reach Antarctica, they are caught up in the Antarctic Circumpolar Current, where they are driven onward into the Pacific. The process is very slow--it can take 1,500 years for water to travel from the North Atlantic to the mid-Pacific--but the volumes of heat and water they move are very considerable, and the influence on the climate is enormous.
(As for the question of how anyone could possibly figure out how long it takes a drop of water to get from one ocean to another, the answer is that scientists can measure compounds in the water like chlorofluorocarbons and work out how long it has been since they were last in the air. By comparing a lot of measurements from different depths and locations they can reasonably chart the water's movement.)
Thermohaline circulation not only moves heat around, but also helps to stir up nutrients as the currents rise and fall, making greater volumes of the ocean habitable for fish and other marine creatures. Unfortunately, it appears the circulation may also be very sensitive to change. According to computer simulations, even a modest dilution of the ocean's salt content--from increased melting of the Greenland ice sheet, for instance--could disrupt the cycle disastrously.
The seas do one other great favor for us. They soak up tremendous volumes of carbon and provide a means for it to be safely locked away. One of the oddities of our solar system is that the Sun burns about 25 percent more brightly now than when the solar system was young. This should have resulted in a much warmer Earth. Indeed, as the English geologist Aubrey Manning has put it, "This colossal change should have had an absolutely catastrophic effect on the Earth and yet it appears that our world has hardly been affected."
So what keeps the world stable and cool?
Life does. Trillions upon trillions of tiny marine organisms that most of us have never heard of--foraminiferans and coccoliths and calcareous algae--capture atmospheric carbon, in the form of carbon dioxide, when it falls as rain and use it (in combination with other things) to make their tiny shells. By locking the carbon up in their shells, they keep it from being reevaporated into the atmosphere, where it would build up dangerously as a greenhouse gas. Eventually all the tiny foraminiferans and coccoliths and so on die and fall to the bottom of the sea, where they are compressed into limestone. It is remarkable, when you behold an extraordinary natural feature like the White Cliffs of Dover in England, to reflect that it is made up of nothing but tiny deceased marine organisms, but even more remarkable when you realize how much carbon they cumulatively sequester. A six-inch cube of Dover chalk will contain well over a thousand liters of compressed carbon dioxide that would otherwise be doing us no good at all. Altogether there is about twenty thousand times as much carbon locked away in the Earth's rocks as in the atmosphere. Eventually much of that limestone will end up feeding volcanoes, and the carbon will return to the atmosphere and fall to the Earth in rain, which is why the whole is called the long-term carbon cycle. The process takes a very long time--about half a million years for a typical carbon atom--but in the absence of any other disturbance it works remarkably well at keeping the climate stable.
Unfortunately, human beings have a careless predilection for disrupting this cycle by putting lots of extra carbon into the atmosphere whether the foraminiferans are ready for it or not. Since 1850, it has been estimated, we have lofted about a hundred billion tons of extra carbon into the air, a total that increases by about seven billion tons each year. Overall, that's not actually all that much. Nature--mostly through the belchings of volcanoes and the decay of plants--sends about 200 billion tons of carbon dioxide into the atmosphere each year, nearly thirty times as much as we do with our cars and factories. But you have only to look at the haze that hangs over our cities to see what a difference our contribution makes.
We know from samples of very old ice that the "natural" level of carbon dioxide in the atmosphere--that is, before we started inflating it with industrial activity--is about 280 parts per million. By 1958, when people in lab coats started to pay attention to it, it had risen to 315 parts per million. Today it is over 360 parts per million and rising by roughly one-quarter of 1 percent a year. By the end of the twenty-first century it is forecast to rise to about 560 parts per million.
So far, the Earth's oceans and forests (which also pack away a lot of carbon) have managed to save us from ourselves, but as Peter Cox of the British Meteorological Office puts it: "There is a critical threshold where the natural biosphere stops buffering us from the effects of our emissions and actually starts to amplify them." The fear is that there would be a runaway increase in the Earth's warming. Unable to adapt, many trees and other plants would die, releasing their stores of carbon and adding to the problem. Such cycles have occasionally happened in the distant past even without a human contribution. The good news is that even here nature is quite wonderful. It is almost certain that eventually the carbon cycle would reassert itself and return the Earth to a situation of stability and happiness. The last time this happened, it took a mere sixty thousand years.
18 THE BOUNDING MAIN
IMAGINE TRYING TO live in a world dominated by dihydrogen oxide, a compound that has no taste or smell and is so variable in its properties that it is generally benign but at other times swiftly lethal. Depending on its state, it can scald you or freeze you. In the presence of certain organic molecules it can form carbonic acids so nasty that they can strip the leaves from trees and eat the faces off statuary. In bulk, when agitated, it can strike with a fury that no human edifice could withstand. Even for those who have learned to live with it, it is an often murderous substance. We call it water.
Water is everywhere. A potato is 80 percent water, a cow 74 percent, a bacterium 75 percent. A tomato, at 95 percent, is little but water. Even humans are 65 percent water, making us more liquid than solid by a margin of almost two to one. Water is strange stuff. It is formless and transparent, and yet we long to be beside it. It has no taste and yet we love the taste of it. We will travel great distances and pay small fortunes to see it in sunshine. And even though we know it is dangerous and drowns tens of thousands of people every year, we can't wait to frolic in it.
Because water is so ubiquitous we tend to overlook what an extraordinary substance it is. Almost nothing about it can be used to make reliable predictions about the properties of other liquids and vice versa. If you knew nothing of water and based your assumptions on the behavior of compounds most chemically akin to it--hydrogen selenide or hydrogen sulphide notably--you would expect it to boil at minus 135 degrees Fahrenheit and to be a gas at room temperature.
Most liquids when chilled contract by about 10 percent. Water does too, but only down to a point. Once it is within whispering distance of freezing, it begins--perversely, beguilingly, extremely improbabl
y--to expand. By the time it is solid, it is almost a tenth more voluminous than it was before. Because it expands, ice floats on water--"an utterly bizarre property," according to John Gribbin. If it lacked this splendid waywardness, ice would sink, and lakes and oceans would freeze from the bottom up. Without surface ice to hold heat in, the water's warmth would radiate away, leaving it even chillier and creating yet more ice. Soon even the oceans would freeze and almost certainly stay that way for a very long time, probably forever--hardly the conditions to nurture life. Thankfully for us, water seems unaware of the rules of chemistry or laws of physics.
Everyone knows that water's chemical formula is H 2 O, which means that it consists of one largish oxygen atom with two smaller hydrogen atoms attached to it. The hydrogen atoms cling fiercely to their oxygen host, but also make casual bonds with other water molecules. The nature of a water molecule means that it engages in a kind of dance with other water molecules, briefly pairing and then moving on, like the ever-changing partners in a quadrille, to use Robert Kunzig's nice phrase. A glass of water may not appear terribly lively, but every molecule in it is changing partners billions of times a second. That's why water molecules stick together to form bodies like puddles and lakes, but not so tightly that they can't be easily separated as when, for instance, you dive into a pool of them. At any given moment only 15 percent of them are actually touching.
In one sense the bond is very strong--it is why water molecules can flow uphill when siphoned and why water droplets on a car hood show such a singular determination to bead with their partners. It is also why water has surface tension. The molecules at the surface are attracted more powerfully to the like molecules beneath and beside them than to the air molecules above. This creates a sort of membrane strong enough to support insects and skipping stones. It is what gives the sting to a belly flop.