Book Read Free

The Hedgehog, the Fox, and the Magister's Pox

Page 4

by Stephen Jay Gould


  The life and works of John Woodward (1665–1728), quintessential officer of the Scientific Revolution (not a general like Newton, but not a private either, and one of the most interesting geological thinkers of his day), clearly embody the sensibilities of that interesting time—for the vernacular often surpasses the stellar as a source of insight about the main thrust of a movement, in this case the origins of modern science. Woodward spearheaded an important and popular inquiry within late-seventeenth-century anglophonic science: the attempt to develop comprehensive theories for explaining the complex, and often cataclysmic, history of the earth (a subject previously allocated to the domain of scriptural authority) in mechanical and observational terms favored by the emerging Scientific Revolution—an activity generally known to its detractors, but sometimes worn as a badge of pride by practitioners, as “world-making.” Woodward’s commitment to the shared precepts of the founders of modern science pervades his work (even though, as we shall see, he ranked among the most pluralistic and least zealous of adherents). First, he accumulated one of the most important and comprehensive collections of rocks and fossils ever assembled in his country, all explicitly done to establish an empirical basis for understanding the structure and history of the earth.

  Collecting had been in vogue among scholars and cognoscenti for some time, with several great sixteenth-century museums preceding the development of scientific concerns that would fully emerge only in Woodward’s time. For example, Peter the Great, Woodward’s regal contemporary, built one of the finest and most extensive collections in Western history (largely by direct purchase rather than personal gathering, given his circumstances of maximal resources and minimal time). Much of this material still survives, on display in the Kunstkamera of St. Petersburg, the building expressly constructed by the czar to house his spoils. But these earlier collections, as reflected in the general name for their display sites—Wunderkämmern, or rooms of wonders—express the different aims and sensibilities of Renaissance and Baroque times: to evoke visceral awe at nature’s diversity; to flaunt the rare and the bizarre (and to outshine other collectors) by owning the strangest and the superlative (the oddest or most deformed, the largest, the most beautiful); to mix both objects of nature and products of human design, thus to sample everything of interest, as promiscuously as possible. But under the transformed agenda of the Scientific Revolution, collectors became more interested in fathoming nature’s order than in eliciting human awe; in developing museums that would reveal, in actual objects, the history and system of nature’s lawlike ways.

  Second, Woodward’s literary efforts in “world-making,” his writings on the nature of fossils and the history of the earth, stress the themes of Newton’s generation, primarily the power of observational and experimental methods to gain new and reliable knowledge inaccessible to former styles of scholarship. Woodward’s most famous book, An Essay Toward a Natural History of Earth, published in 1695, illustrates the emerging consensus, even though the peculiar (and quite incorrect) content of Woodward’s central theory might lead us to dismiss his work, with superficial scorn, as a paragon of prescientific irrationalism.

  We can learn a great deal from the covert content of actual, and apparently insignificant, illustrations. Note, for example, the broad aims of world-making, as expressed in the ample heading of Woodward’s title page (figure 1). But the far fewer words of the facing left-hand page (figure 2) speak volumes about the hold of the old, and the embattled pugnacity of the new. I argue throughout this part that these earliest modern scientists, in the throes of their birth pangs, worried about the power and misleading ways of two entrenched and prestigious institutions: official theology (but not religion per se, as all these men were personally devout and seriously Christian), and the hidebound traditions of humanistic scholarship.

  This left-hand page represents a sly dig at the first impediment. Books published under Catholic auspices had to pass the scrutiny of official censors, and receive an imprimatur—literally meaning “let it be printed.” This imprimatur had to be attested, signed, and published, usually on the left-hand page just before the start of the book’s actual content. The presses of Anglican Britain operated under no such restriction, so Woodward displayed the greater liberty of his culture with an “official” imprimatur signed not by a theological guardian of doctrine and morality, but by John Hoskyns, described as V.P.R.S., or “vice president of the Royal Society,” Britain’s primary institution for the promotion of science.

  As another emblem of changes not yet made, and tension between old and new, why does the date of the imprimatur appear dually and ambiguously as “Jan. 3, 1694/5”? Couldn’t the august Royal Society read a calendar and know the correct year? The Gregorian reform had properly reset calendars to acknowledge the year’s true length as 365 and not-quite-a-quarter-of-an-extra-day (requiring the suppression of occasional leap years, rather than adding the extra day every four years, as in the Julian calendar, used ever since Caesar named the system for himself). But the new calendar had been proclaimed by Pope Gregory in 1582 and therefore smelled like a papist plot to the Anglican Brits (who did not succumb to astronomical reality and adopt the Gregorian system until the mid-eighteenth century). Now, the Julian calendar, in addition to falling so out of whack with the solstices and equinoxes as its small errors accumulated over the centuries, also began the year on March 1. Thus the January 3 of Woodward’s imprimatur fell within 1694 on the Julian calendar still used in England, but within 1695 on the more accurate Gregorian calendar (which had also switched the admittedly arbitrary beginning of the year to January 1).

  Figure 1.

  Figure 2.

  What, then, was a budding English scientist to do—be patriotic and parochial, or scientific and universal? (The same dilemma continues to face American scientists in the only Western nation that has not adopted the scientifically far more convenient metric system. My colleagues and I would not dream of using anything but metric units in our technical publications, but what should we do in our popular articles? Moreover, ambiguity can be expensive, as illustrated by the recent failure of an important mission to Mars, triggered by a vernacular figure that engineers had read as metric.) In any case, Woodward cited both alternatives, letting his readers pay their money for his book and then make their choice.

  In his distinctive brand of world-making, Woodward attributed the form and sedimentary constitution of our present earth almost entirely to Noah’s flood, which, according to his theory, had dissolved all nonorganic material of the original earth into a sludge of oceanic waters (while leaving pieces of plants and animals more intact for later embedding as fossils). The retreating floodwaters then deposited this universal slurry as a series of horizontal layers, thus forming the earth’s strata with their contained fossils. In the quick settling out of this slurry, the heaviest fossils fell first, and the vertical order of the fossil record therefore records the density of organic remains, heaviest below and lightest on top! Woodward confessed the admittedly peculiar nature of such a “wild” claim in his book’s preface and first presentation:2 It will perhaps at first sight seem very strange, and almost shock an ordinary reader to find me asserting, as I do, that the whole terrestrial globe was taken all to pieces and dissolved at the Deluge, the particles of stone, marble, and all other solid [rocks] dissevered, taken up into the water, and there sustained together with sea-shells and other animal and vegetable bodies; and that the present earth consists, and was formed out of that promiscuous mass. . . . That the said terrestrial matter is disposed into strata or layers, placed one upon another in like manner as any earthy sediment, settling down from a fluid in great quantity will naturally be; that these marine bodies are now found lodged in those strata according to the order of their gravity, those which are heaviest lying deepest.

  At first hearing, any modern geologist might be forgiven for assuming that Woodward must rank among the antiscientific theological dogmatists, committed to validating the literal tr
uth of scripture, inventing fanciful explanations from an armchair, and caring not a whit about the actual character of fossils or the sedimentary record. I must also confess that this first impression receives strong enhancement from the remarkable, if entirely incidental, fact that one of the leading “theories” purveyed by modern American fundamentalists who call themselves “creation scientists”—one of the great oxymorons of our time—promotes the exact same explanation for the fossil record: as the product of a single event that occurred during the few thousand years of allotted biblical time and left a paleontological record ordered not by the millions of years needed to evolve new species from their predecessors, but only in the few years required to deposit all fossils in order of their density—a patent empirical absurdity since some of the lightest and most delicate fossils occur in the oldest strata, while many massive forms (mammoth teeth and bones for starters) can only be found at the top of the stratigraphic pile. (See, for example, the “bible” of modern creationism—The Genesis Flood, by J. C. Whitcomb and H. Morris.)

  But Woodward strongly rejects this admittedly plausible claim that he operated as an armchair theologian, and situates himself squarely within the developing beliefs and procedures of the Scientific Revolution, insisting that, however strange or improbable his theory may appear, he had reached his conclusions by inference from copious observations of fossils and strata, and that the theory would survive or expire on the strength and validity of these and subsequent empirical studies. Indeed, the opening words of his treatise proclaim:From a long train of experience, the world is at length convinced that observations are the only sure grounds whereon to build a lasting and substantial philosophy. All parties are so far agreed upon this matter that it seems to be now the common sense of mankind. For which reason, I shall in the work before me, give myself to be guided wholly by matter of fact . . . and not to offer anything but what hath due warrant from observations; and those both carefully made and faithfully related.

  (Needless to say, I am not arguing that Woodward strictly followed his own stated ideals, because no one can—and theoretical preferences always intrude, even when our most honorable intentions lead us to believe most fervently that we only follow the objective dictates of pure observation.)

  Woodward even maintains that the oddity of his theory, forced upon him as the only way to explain his observations, weighed heavily upon his sense of rationality:In truth the thing, at first, appeared so wonderful and surprising to me, that I must confess I was for some time at a stand; nor could I bring over my reason to assent, until, by a deliberate and careful examination of these marine bodies, I was abundantly convinced that they could not have come into those circumstances by any other means than such a dissolution of the earth, and confusion of things. And were it not that the observations, made in so many, and those so distant, places, and repeated so often with the most scrupulous and diffident circumspection, did so establish and ascertain the thing, as not to leave any room for contest or doubt, I could scarcely even have credited it.

  How, then, did Woodward and other prominent “world-makers” of his time characterize the major forces and impediments aligned against the new scientific approach to establishing firm, and ever increasing, knowledge about the ways and means of nature? Two themes and worries circulate throughout the writings of Woodward and other world-makers. These two themes also set the foundation for this book, and for my key claim that the oppositional pugnacity, so understandable and necessary in the initial defense of a fledgling movement against genuine adversaries and powerful inertia, became unseemly and inappropriate ages ago.

  First, Woodward railed against the humanistic tradition, which had so singularly failed to comprehend the true nature of fossils as organic remains because these prescientific scholars had used false criteria and classifications based on human needs and perceptions, rather than basing their schemes of order upon the natural and mechanical status of the objects themselves. Woodward wrote, in his great posthumously published work of 1728, Fossils of All Kinds, Digested into a Method, Suitable to Their Mutual Relation and Affinity: In their [the humanists’] methodizing and ranging of the native fossils, ’tis no wonder that they fail, and that all things are in disorder, and out of course with them, when they so frequently make choice of characters, to rank them by, that are wholly accidental, and unphilosophical; as having no foundation in nature, or the constitution of the bodies themselves. Thus some rank them under the heads of common, and rare, or mean and precious; of less, and of greater use. Then they reduce them to subordinate classes, according to their particular uses, in medicine, surgery, painting, smithery, and the like; which would be proper in an history of art, or mechanics; but serves only to mislead them and their readers in the history of nature.

  Second, the doubts, imprecations, and even frontal assaults of parts of the theological establishment, and of some conservative religious thinkers, posed a threat to the freedom of emerging scientific practice to seek mechanical explanations based on natural laws, and to explore an expanded concept of the earth’s age. I cannot emphasize too strongly that the old model of all-out warfare between science and religion—the “standard” view of my secular education, and founded upon two wildly successful books of the mid- to late nineteenth century (Draper, 1874, and White, 1896; see my book Rocks of Ages, previously cited [page 16], for more on the fallacies of this construct)—simply does not fit this issue, and represents an absurdly false and caricatured dichotomy that can only disrespect both supposed sides of this nonexistent conflict. “Religion,” as a coherent entity, never opposed “science” in any general or comprehensive way.

  Some dogmatists and traditionalists did greatly fear the influence of science and did hold strongly to biblical literalism (particularly for the earth’s young age, a short episode of creation, and the reality of a universal flood) and to the impossibility of explaining planetary history without frequent and direct miraculous intervention by God. But many other equally devout and equally professional theologians welcomed the new knowledge as embodying a more exalted concept of God’s awesome power and sense of order, and of his wisdom in establishing a universe operating under constant laws of his own proclamation—regularities that would require no divine tampering thereafter. Moreover, effectively all major scientists of the seventeenth century held genuine and firm beliefs in a deity of fairly conventional form, and in the sacredness and infallibility (if not the literality) of the Bible.

  Indeed, the movers and shakers of the Scientific Revolution espoused a range of opinions about even so central a question as whether miracles—defined as direct supernatural interventions of God—must be invoked to explain the full range of phenomena required to chronicle the earth’s history. (In the practical terms of a working scientist, miracles must be treated as temporary suspensions for the otherwise invariant regime of natural laws that regulate the mechanisms of the universe, and make scientific explanation possible.) Newton himself took a “generous” view, and happily granted God an occasional option for miraculous intervention, even though the success of science did imply God’s strong preference for invariant natural law, and his sparing use of miraculous effects. Newton wrote: “Where natural causes are at hand God uses them as instruments in his works, but I do not think them alone sufficient.”

  But other key figures of Newton’s generation hoped to ban miracles entirely, arguing that God would only be demeaning his own grandeur if he ever needed to fiddle, even momentarily, with his own laws to nudge history back into the right track. And just to prove that degree of theological commitment did not necessarily correlate with warm feelings toward occasional miracles, the leading Anglican theologian and naturalist, the Reverend Thomas Burnet, became the staunchest defender of full sufficiency for ordinary physical laws, and the strongest opponent of miracles, even for explaining such spectacular events as Noah’s flood. Burnet’s Sacred Theory of the Earth, first published in 1680, became the most influential (and controversial) document
in the growing scientific literature on “world-making.” (Newton’s brief for occasional miracles, quoted above, comes from a letter he wrote to Burnet, criticizing his close friend and scientific colleague for insisting that God must restrict himself to ordinary physical processes in the extraordinary task of world-making.)

  Woodward followed Newton’s lead on this issue, and frankly admitted that he could imagine no mechanism for dissolving the original earth into the slurry of Noah’s flood except a miraculous suspension of gravity, causing particles that normally cohere to fall apart and dissolve. But—and here we grasp the crucial difference between scientists who permitted occasional miracles and traditionalists who embraced divine intervention as the preferred and primary motor of nature’s substantial events—Woodward only called upon miraculous agency when natural explanation had, in his view, clearly and irretrievably failed, and when observation plainly implied the existence of phenomena that could not be explained in any other way. In short, observational necessity (rather than theoretical or theological preference) established the only acceptable ground for invoking divine intervention—an explanation of last resort, to be acknowledged only when invariant natural law simply could not, in his understanding, generate an empirically affirmed set of results.

  In reading Woodward’s major work of 1695, one senses that he regarded his appeal to miraculous agency for dissolving the earth into the floodwaters as troublesome to the spirit of developing scientific methods, and more than a bit embarrassing. For, in describing this central argument of his entire theoretical apparatus, Woodward ventures only two short statements, one a quick admission, and the other a near apology. He situates the first admission within an explicit critique of Burnet’s views on fully physical explanation:That the deluge did not happen from an accidental concourse of natural causes . . . That very many things were then certainly done, which never possibly could have been done without the assistance of a supernatural power. That the said power acted in this matter with design, and with higher wisdom. And that, as the system of nature was then, and is still, supported and established, a deluge neither could then, nor can now, happen naturally.

 

‹ Prev