Book Read Free

The Hedgehog, the Fox, and the Magister's Pox

Page 13

by Stephen Jay Gould


  But if these attracted idols enter our minds from without, the innate idols “inhere in the nature of the intellect.” Bacon identified two innate idols at opposite scales of human society: “idols of the cave,” representing the peculiarities of each individual’s temperament and limitations; and “idols of the tribe,” denoting foibles inherent in the very (we would now say “evolved”) structure of the human mind. Among these tribal idols of human nature itself, we must prominently include both our legendary difficulty in acknowledging, or even conceiving, the concept of probability and also the motivating theme of this book: our lamentable tendency to taxonomize complex situations as dichotomies of conflicting opposites.

  In a key insight, explicitly invoking these idols to dismember the myth of objectivity, Bacon holds that science must inevitably work within our mental foibles and social constraints by marshaling our self-reflective abilities to understand—because we cannot dispel—the idols that always interact with external reality as we try to grasp the nature of things. We might identify, and largely obviate, the theatrical and marketplace idols imposed from without, but we cannot fully dispel the cave and tribal idols emerging from within. The influence of these innate idols can only be reduced by scrutiny and vigilance: “These two first kinds of Idolaes [attracted idols of the theater and marketplace] can very hardly; but those latter [innate idols of the cave and tribe], by no means be extirpate [sic]. It remains only that they be disclosed; and that same treacherous faculty of the mind be noted and convinced.”

  In a striking metaphor, Bacon closes his discussion of idols by describing our scientific quest as an interplay between mental foibles and outside facts, not an objective march to truth—a marriage of our mental propensities with nature’s realities, done for purposes of human betterment: “We presume . . . that we have prepared and adorned the bridechamber of the Mind and of the Universe. Now may the vote of the marriage-song be, that from the conjunction, human aids, and a race of inventions may be procreated, as may in some part vanquish and subdue man’s miseries and necessities.”

  I can only express a final hope that the consummation of such a favorable union might not only destroy the barren myth of dichotomy forever, but might also, in the healthy hybridization of mental modes (so long understood and so well practiced in the humanities) with techniques of observation and experiment (so fruitfully exploited by the sciences), yield a bevy of mixed offspring that would expose the concept of oppositional dichotomy between science and the humanities as a foolish negation of our mental capacities and complexities—a trap no less harmful and restrictive of human potential than our former efforts to keep nonexistent human races both separate and unequal.

  6

  Reintegration in Triumphant Maturity

  YES, A TIME TO BREAK DOWN AND A TIME TO BUILD UP. CLEARLY WE ARE now in the Preacher’s second stage (Ecclesiastes 3:3), and it strikes me as simply unseemly, not to mention unprofitable, to keep the demolition crew in high perks and wages when we ought to be hiring architects and masons. A confrontational attitude toward the contrary claims of Renaissance humanists justifiably characterized the initial rhetoric of modern science in its seventeenth-century infancy, as this new kid in town struggled to gain some ground in a grand game of intellectual mumblety-peg (a contest of universal boyhood, called “land” or “territory” in various boroughs of New York City during my youth, and based on dividing up a specified totality of ground by throwing a pocketknife into the earth and cutting along the line of penetration). But, for two basic reasons, I see no conceivable justification, other than human narrowness and the weight of “traditional” practice, for continued contention between science and the humanities: (1) science took charge, triumphantly and ever so long ago, of the empirically designated and logically allotted share of land on the big board of our mental lives; and (2) the full board includes both generous parcels for each of the many mansions of our different pursuits (one for each foxy style), and large tracts of shared space for debates, games, joint presentations, and endless schmoozing on lovely park benches (the careful and ever so fruitful joining advocated at the very end of my preface).

  Yet science has shown a regrettable tendency both to claim superiority (or at least privileged status) as a “better” way of knowing in general, and also to engage in forays and poachings into mansions that, by elementary courtesy, require an explicit invitation for entrance as someone else’s guest. Scientists have tended to depict their own history as a steady march to truth, mediated by successful application of a universal and unchanging “scientific method” that only requires time to clear away the encumbering myths of a “bad old” past bound by strictures of theology or some other social impediment, and to accumulate the empirical data required to validate nature’s true modes of operation.

  This privileged view of a “separate” science, chugging along progressively while other institutions tack to the ever-changing winds of social fashion, achieved its “purest” expression—thus winning the deserved enmity of intellectual historians who understood the true complexity and contingency of all human disciplines—in the “positivist” philosophy and historiography of the late-nineteenth-century German physicist Ernst Mach. This basic approach, so arrogant in its claims for special status among institutional histories, and so justly rejected by virtually all modern historians of science (see Thomas Kuhn, The Structure of Scientific Revolutions, 1962, and Norwood Russell Hanson, Patterns of Discovery, 1958, for the classic statements), still motivates the pervasive and ordinary, if uncritical, beliefs of most working scientists about the history of their disciplines, and still festoons the obligatory introductory page about past worthies in virtually every undergraduate textbook in science.

  Serious historians dismiss this cardboard version of history as linearly accumulating progress with an odd term of jargon derived not from science at all, but from a group of scholars who plied their craft by using the past to validate Whig principles of their own political affiliation. The great British historian Herbert Butterfield designated this attitude as Whig or Whiggish history in a famous essay (of novella length) published in 1931, in print ever since, and titled The Whig Interpretation of History. Although Butterfield took his name from a particular group of political historians, he recognized that this style of presentation had always been favored by the few professional scientists who took an interest in their subject’s past. In his preface, Butterfield defined this self-serving approach as “the tendency in many historians to write on the side of Protestants and Whigs, to praise revolutions provided they have been successful, to emphasize certain principles of progress in the past and to produce a story which is the ratification, if not the glorification of the present.”

  I criticize this triumphalist conviction of most scientists for two primary reasons: First, because Whiggish assertions alienate colleagues in other fields by claiming a special privilege for science and its history as a pristine and progressive form of human knowledge. And, second, in a curious irony, because the antidote to the cardinal Whiggish assumption that scientists free themselves from surrounding social and psychological norms to follow the straight and narrow path toward truth emanated from one of our own, and at the beginning of our modernity: Francis Bacon’s classification and analysis of the “idols” of our social and cognitive prejudices (as just discussed in chapter 5, pages 111–112).

  Scientists will not make their appropriate and harmonious peace with colleagues in other disciplines until they recognize their own calling as a quintessentially human enterprise, laden with all the mental idiosyncrasies of the species that must do the work, yet still capable, as its own special feature (for every discipline can claim some interesting uniqueness) of reaching a more adequate and deeper understanding of material reality.

  But I have no desire to pursue this familiar argument against scientific Whiggery any further in such an abstract and non-operational form—for we scientists tend to be suspicious, and rightly so, of grandiose and general
claims without any immediate operational oomph. Rather, the argument becomes much more persuasive if we can show our fellow scientists that abandoning the objectivist mythology of Whig history, and acknowledging (perhaps even embracing) the human foibles and social embeddedness in all scientific activity, will greatly improve the daily practice of our own trade. Thus, and returning to the seventeenth-century works of Grew and Ray to illustrate the inevitable and pervasive human side of putative “objectivity” (see previous discussions of these works in chapter 3), I shall explore the two eminently practical reasons why scientists should devote substantial respect and attention to this humanizing character of all our work: (1) significant gains in our own understanding, or becoming a fox to be a better hedgehog, and (2) important melioration of the fears and misapprehensions of a suspicious public, whose approbation we require in a democratic system with scientific research so dependent upon government funding—or showing the skeptics, in other words, that hedgehogs really can be useful and cooperative, despite those overt prickles.

  1. An understanding of the social embeddedness of all aspects of science can forge an essential tie with humanistic studies and greatly aid the technical work of scientists as well.

  The most harmful effect of objectivist mythology arises from its insidious role (in the technical rather than moral sense) in shielding scientists from recognizing their own biases. In most fields, scholars understand that no person is an island, and that the bell of universal folly tolls for all of us. But most scientists actually believe their own cant, trusting that the “scientific method” frees them from strictures of unconscious preferences for certain social outcomes, cognitive styles, or psychological stances. Thus the loudest scholarly apostles of obedience to factual reality become, ironically, the most gullible prey to subjective biases, lulled into complacency by a belief that their canonical procedures build shields against such impediments. But just as vigilance becomes the eternal price of liberty in our political slogans, so too must rigorous self-scrutiny represent the cost of fairness and maximal objectivity in scientific research. And we scientists can best appreciate both the general principle itself, and the major snares of specific biases, by reading and respecting our colleagues in the humanities and social sciences, the main disciplinary “homes” for study of this ineluctable human side to all forms and styles of inquiry.

  From the Socratic injunction gnothi seauton (know thyself), to the admonition “physician heal thyself,” to Jesus’ suggestion that the nonexistent sinless might cast the first stone, our motto-makers have understood the essential principle and paradox of self-awareness as the most difficult (albeit closest) form of obtainable knowledge. Thus, because we experience such trouble in identifying and expunging our own biases—for we so often misequate them with logically evident or factually proven truth, if we recognize them as arising within ourselves at all—the historical study of distant forebears offers maximal insight into the Baconian idols that stand before nature in our struggles to understand this wondrously complex universe. For when we expose the “obvious” social influences so casually depicted as evident factual reality by people whom we admire as undeniably ahead of us in raw brain power, then we should be ready to admit the truly unavoidable, if painful, inference that we too must be wallowing in unrecognized assumptions that future generations will deem just as risible.

  The following comment from Grew’s dedication to the Royal Society exposes, without a glimmer of recognition, the oldest and most pervasive prejudice of gender (while also displaying, on an even more general plane, the primary cognitive bias behind all our taxonomic schemes—dichotomy itself, with the usual judgment of more and less worthy imposed over the geometry of simple division). Just as Bacon, following a tradition of centuries, depicted nature as passively female and the virility of developing science as actively male in seeking to know her (and Bacon did not shy from a torrent of metaphors about ravishing and possessing, or “knowing” the formerly virginal Miss Nature in a biblical sense), Grew praises a wealthy patron of the Royal Society for putting his land (part of nature’s bounty) to scholarly benefit, and for using some proceeds to publish Grew’s catalog of the society’s collections:I have made this address not only to do you right, but to do right unto virtue itself. And that having proposed your exemplary prudence unto others, they may, from you, learn to use the redundant part of their Estates either to a charitable end, as this City will witness for yourself, or the promotion of masculine studies, as in the present case.

  Since I view the language police as usually and basically silly in any case, and since Grew’s words certainly fall beyond any imaginable statute of limitations, I attach no depth of meaning to this particular comment, but merely record the apparent automaticity and extent of such valuation by gender. But when we come to a more subtle and far more extensive example in Ray’s Ornithology, we can readily gauge the deep influence of the idol of dichotomy on actual practice—for Ray here embraces this bias (unconsciously, I must assume, despite the egregious ring of his words to modern ears) as a supposedly objective basis for achieving the primary goal of natural history: the development of a factually accurate taxonomy, or classification of organisms.

  Ray, as previously discussed (see pages 43–47), structures his argument as a pointed refutation, emerging from new methodologies promoted by the Scientific Revolution, of the basic procedure followed by Renaissance scholars in presenting the materials of natural history: the composition of compendia, with completeness (of all stated opinions and impressions throughout recorded history) rather than discrimination and factual accuracy as the primary goal, and with emphasis on classical claims and sources as the wellspring and full guardian of all knowledge. Ray, in breaking with the encyclopedic tradition of Gesner and Aldrovandi, pledged to rely upon discrimination and elimination, thus including only the hedgehog’s kernel of verifiable accuracy. But what claims, and which organisms, should be presented, and which omitted? In particular, what specimen (or set of specimens) shall represent a species, for the engraver cannot draw every variation among the multifarious representatives of each kind. Ray’s list of four criteria could not be more revealing, or more illustrative of evident biases among other potential choices, whereas Ray, by his own lights (I must assume), merely reported a decision that seemed to him so objectively mandated that he needed to supply no defense beyond simple affirmation:9

  It is requisite now that we inform the reader what compendious ways we sought to avoid unnecessary expenses with graving of figures:1. Of the same species of bird when more figures than one occurred either in divers authors, or our own papers, or both, we caused only one, which we judged to be the best, to be engraven.

  2. We have for the most part contented ourselves with the figure of one sex only, and that the male.

  3. We have omitted all such dubious icons as we knew not whether they were of true birds or not, or could not certainly determine of what species they were.

  4. Of such as differ only in bigness, or if otherwise in such accidents as cannot be expressed in sculpture, we have given only the figure of the greater [that is, the larger in body size].

  I can accept point one as a worthy generality (pending the definition of “best”). I certainly approve point three as Ray’s commitment to the observational ideals of the Scientific Revolution over the promiscuity of previous compendiasts. But what can we make of the points two and four beyond the stubborn persistence of boyness and bigness as undefined preferences recording the state of being (or at least the aspirations) of the writers themselves?

  Proceeding further into the heart of Ray’s general method for classifying organisms, we encounter a full system of social judgments embedded within the basic structure of his taxonomy (but probably conceptualized by Ray, if he considered the issue in any explicit way at all, as logically necessary decisions implied by objective facts of biology). Ray organizes his categories of birds by a conventional device still widely used, particularly in handbooks for prac
tical identification: the dichotomous key. These keys, although generally drawn as moving from left to right rather than from the ground to the skies, follow the geometric order of a branching tree, with the largest inclusive category at the base (the left-hand side of a key, corresponding to the central trunk of a tree), with finer distinctions recorded by successive divisions of larger units into two smaller units at each point of branching.

  Interestingly, the basic geometry of branching precludes any judgment about relative status of the two resulting units. When a trunk splits evenly, neither branch can claim a preferred position, for the point of bifurcation acts as a pivot, and the two resulting branches can rotate freely around this pivot into any accessible position. Thus, when we draw one branch on the left and the other on the right (for a tree growing upward), or when we depict one branch on top and the other on the bottom (for a system, like Ray’s, that bifurcates from left to right), we only follow an arbitrary convention. Left and right, top and bottom, can always be interchanged without altering the topology of the system at all.

 

‹ Prev