Book Read Free

The Hedgehog, the Fox, and the Magister's Pox

Page 19

by Stephen Jay Gould


  Figure 27.

  Critics retaliated right away and to every detail. Flamingos do not concentrate their feeding at dawn and dusk, but remain active all day. Anacondas and alligators, their major enemies, do not inhabit the films of saline ponds that flamingos favor, and where Thayer thought they melted into invisibility at key times. Flamingos eat by filtering tiny eyeless animals, so the argument can’t even operate in reverse to hide predatory flamingos from unsuspecting prey.

  Far more generally (and embarrassingly), Thayer’s argument must also fail on its own terms—and Thayer, who was overenthusiastic to a fault, but neither dishonest nor dishonorable, had to confess. Any object viewed against the fading light will appear dark, whatever its actual color. Thayer addressed this problem explicitly by painting a dark palm tree against the sunset in his infamous and fanciful painting of fading flamingos (reproduced here as figure 28, and for unfortunate practical reasons in inappropriate black and white). Thus he could only claim that flamingos looked like the sunset in the opposite side of the sky: red clouds of sunset in the west, red masses of flamingos in the east. Would any animal be so confused by two “sunsets,” with flamingos showing dark against the real McCoy? Thayer admitted in his 1909 book:Of course a flamingo seen against dawn or evening sky would look dark, like the palm tree in the lower left-hand figure, no matter what his colors were. The . . . right-hand figures, then, represent the lighted sides of flamingos at morning or evening, and show how closely these tend to reproduce the sky of this time of day; although always, of course, in the opposite quarter of the heavens [Thayer at least fairly underscores his own admission] from the sunset or dawn itself.

  Two other, and more specific, reasons beyond the almost perfect ridiculousness of Thayer’s flamingo blunder has kept his story in active circulation. First, an old maxim for endurance (not Thayer’s aim for this particular error!) cites the virtue of attracting famous adversaries—and Thayer could not possibly have surpassed himself on this score. Teddy Roosevelt (whom I once regarded, in my arrogant and ignorant youth, as an impostor on Mount Rushmore in the presence of Lincoln, Jefferson, and Washington, but whom I now regard as one of the most fascinating characters in American history) operated as a distinguished natural historian and avid big-game hunter, when not engaged in more mundane pursuits. Roosevelt also took a strong interest, as both hunter and biologist, in the functions of animal colors—and he regarded Thayer’s obsession with concealment as both a nutty notion and an impediment to science. In fact, Roosevelt published, in 1911, a one-hundred-page monograph against Thayer’s ideas: “Revealing and concealing coloration in birds and mammals,” printed in a professional journal, the Bulletin of the American Museum of Natural History.

  Figure 28.

  Not only did Roosevelt hold right on his side, and name value to his credit. America’s former boss also carried a very big stick (and did not speak softly) as a polemical writer. Consider just one example from a private letter (though not much different in tone from many passages in his 1911 monograph), written to Thayer on March 19, 1912. (I confess that I also love this example as a testimony to the evolution of American politics and the nature of campaigning. In 1912, Roosevelt had split the Republican Party, formed his own Bull Moose group as a third-party insurgency against the incumbent W. H. Taft, thus effectively, if unintentionally, throwing the election to the Democratic candidate, Woodrow Wilson. Now, can you imagine any modern candidate, in the midst of such an effort, and just a month after the New Hampshire primary [please pardon my symbolic anachronism], taking time from the stump to write a long letter about natural history!)There is in Africa a blue rump baboon. It is also true that the Mediterranean Sea bounds one side of Africa. If you should make a series of experiments tending to show that if the blue rump baboon stood on its head by the Mediterranean you would mix up his rump with the Mediterranean, you might be illustrating something in optics, but you would not be illustrating anything that had any bearing whatsoever on the part played by the coloration of the animal in actual life. . . . My dear Mr. Thayer, if you would face facts, you might really help in elucidating some of the problems before me, but you can do nothing but mischief, and not very much of that, when conducting such experiments. . . . Your experiments are of no more real value than the experiment of putting a raven in a coal scuttle, and then claiming that he is concealed.

  The second reason establishes the relevance of this example for a book on healing a misconceived gap between science and the humanities. Cheap shots come with the territory of human nature, but Thayer’s opponents did not shrink from the philistine benefits of the old canard that only a person of artistic temperament, devoid of proper scientific training and understanding, could ever blunder so badly. For example, Teddy Roosevelt continued his attack in a statement that might have attracted even more attention in our litigious age: Thayer’s errors, he opined, “are due to the enthusiasm of a certain type of artistic temperament, an enthusiasm also known to certain types of scientific and business temperaments, and which when it manifests itself in business is sure to bring the owner into trouble as if he were guilty of deliberate misconduct.” Thomas Barbour, director of Harvard’s Museum of Comparative Zoology (where I now work as professor and curator), stated: “Mr. Thayer, in his enthusiasm, has ignored or glossed over with an artistic haze. . . . This method of persuasion, while it does appeal to the public, is—there is no other word—simply charlatanry however unwitting.”

  But this common charge just won’t wash, and such personal branding by general caricature can only be called a cheap shot. Sure, Abbott Thayer became a classic victim of his own overexcitement and consequent extinction of good judgment. But I fail to see how this common human capacity correlates positively with art as a profession, or negatively with science as a calling. “True belief” can ensnare anyone in any activity—as Teddy Roosevelt at least had the decency to admit by including scientists among potential victims of such a temperament. Perhaps the rules of scientific procedure do act more effectively than the norms of some other lifestyles to discourage such unswerving commitment in the face of negative evidence. So one might anticipate a lower frequency of such behavior among professional scientists. (But I advance this hypothesis with only mild belief in its slight probability, and would certainly need to see gobs of hard data before reaching any conclusion.) In any case, the history of science remains chockablock with folks, including many people of great intellectual talent, who maintained, literally to their dying breath, pet theories and driving convictions just as uncompromisingly stated, and just as patently disproven (if only they had been willing to study the evidence), as Thayer’s belief in the exclusivity of concealing coloration.

  So why rehearse the old and sad tale of Thayer’s chimerically invisible flamingos? Only to cast a few stones at scientists who went overboard in unfairly ascribing their empirically justified rebuttals to Thayer’s artistic temperament? No, my method (at least in this case) betrays no madness; for I now ask you to back up and consider Thayer’s first work in animal coloration, before the exclusivity of concealment captured his mind. In fact, Thayer not only made an important scientific discovery; he also reached his remarkable (and correct) conclusion by direct and conscious application of an artistic principle that had eluded all earlier scientists who had considered the same problem and failed because they had never encountered this conceptual key to resolution.

  In a famous paper of 1896, titled “The Law Which Underlies Protective Coloration,” Thayer solved the persistent problem of countershading. The colors of a countershaded animal are neatly graded to balance the effects of sunlight and shadow—usually dark on top grading evenly to a light (often truly white) belly. Biologists had long recognized the concealing value of countershading, but had assumed, before Thayer’s work, that the effect arose by simple matching of colors. That is, a predator looking down upon the dark top of a potential prey would not distinguish the creature from the equally dark ground, whereas an enemy looking up would
only perceive the white belly of potential prey, and then lose the animal as it blended into the bright sky.

  But Thayer, as a trained artist who knew all the standard rules for depicting an illusion of three dimensions on a flat canvas, brilliantly recognized that countershading worked as nature’s exploitation of a precise reversal—that is, by creating the illusion of an entirely two-dimensional object in a three-dimensional world. In short, Thayer recognized that countershading would conceal animals primarily by making them look flat, not mainly by matching their colors to their backgrounds.14 Thayer knew this principle in his bones, and he then built decoy models of countershaded (and invisible) and inversely shaded (and doubly visible) birds to prove his point by striking demonstrations to skeptical biologists in the field (see figure 29).

  Thayer convinced all doubters that the precise reversal between strength of coloration and intensity of illumination neatly cancels out all shadow and produces a uniform color from top to bottom. As a result, the animal becomes flat, perfectly two-dimensional, and cannot be seen by observers who have, all their lives, perceived the substantiality of objects by shadow and shading. Artists have struggled for centuries to produce the illusion of depth and roundness on a flat canvas; nature has simply done the opposite—she shades in reverse in order to produce the illusion of flatness in a three-dimensional world.

  Contrasting his novel principle of countershading with older ideas about mimicry, Thayer wrote in his original statement of 1896: “Mimicry makes an animal appear to be some other thing, whereas the newly discovered law makes him cease to exist at all.”

  Figure 29.

  Thayer, in the joy of discovery, attributed success to his chosen profession and advanced a strong argument about the dangers of specialization and the particular value of “outsiders” to any field of study. He wrote in 1903: “Nature has evolved actual art on the bodies of animals, and only an artist can read it.” And later, in his 1909 book, but now more defensively as his overextensions begin to attract valid criticism:The entire matter has been in the hands of the wrong custodians. . . . It properly belongs to the realm of pictorial art, and can be interpreted only by painters. For it deals wholly in optical illusion, and this is the very gist of a painter’s life. He is born with a sense of it; and, from his cradle to his grave, his eyes, wherever they turn, are unceasingly at work on it—and his pictures live by it. What wonder, then, if it was for him alone to discover that the very art he practices is at full—beyond the most delicate precision of human powers—on almost all animals.

  When I wrote my initial article on Thayer’s discovery of countershading, I did not know that the artist’s work on concealing coloration had also enjoyed an importance far greater than the merely abstract solution of an old problem in evolutionary biology. Thayer recognized the potential value of his findings in military camouflage, and he campaigned vigorously, both in America and in England (but with varying success), to convince our forces and allies to use his insights. He experienced much frustration, but eventually (if only posthumously, in World War II) gained the most precious reward of vital practical utility for good ideas, admittedly carried too far in his original intentions. I therefore end this section, and reinforce my basic claim for the benefits of pluribus, by quoting from two fascinating letters that I received, in response to my original article, from the former chief of naval camouflage, Lewis R. Melson, USNR. He wrote:Many years ago, I was summarily ordered to assume the responsibility for directing the efforts of the U.S. Navy’s Ship Concealment and Camouflage Division, relieving the genius who had guided this effort throughout World War II, Commander Dayton Reginald Evans Brown. Dayton had perfected the camouflage patterns employed on all naval ships and aircraft throughout the war. . . . I found his theories and designs were based upon Abbott H. Thayer’s earlier work in the field of concealment and camouflage. . . . Despite whatever everyone thought and thinks about Thayer’s theories, both his “protective coloration” and “ruptive” designs were vital for concealing ships and aircraft.

  Melson continued:All naval concealment and camouflage is designed for protection against the horizon in the case of shipping and either for concealment against a sea or sky background, again at long ranges, for aircraft. Thayer’s “Protective coloration” designs were outstanding for aircraft, light undersides and dark above. Ship concealment for temperate and tropical oceans employed the “protective coloration” designs, while “ruptive” or “disruptive” designs worked best against polar backgrounds.

  Melson also taught me some history of camouflage during the two world wars. Despite our later and fruitful use in World War II, the U.S. Navy had originally rejected Thayer’s proposal during World War I. However, Thayer had greater success in Britain, where his designs proved highly valuable during the First World War. Melson wrote:Thayer’s suggestions . . . called for very light colored ships using broken patterns of white and pale blue. The intent of this pattern was to blend the ship against the background at night and in overcast weather. . . . These patterns proved very successful. HMS Broke was the first ship so painted and it was rammed twice by sister ships of the Royal Navy, whose captains protested that they had been unable to see Broke.

  THE SCIENCE BEHIND POE’S GREATEST (AND ONLY) HIT

  I begin with an old question in the general category of trivial pursuits with surprising resolutions: “What is the only work written by Edgar Allan Poe that appeared in a second edition during his lifetime?” Not “The Raven,” which suffered the fate of its own refrain: “Nevermore.” Not “The Fall of the House of Usher,” which simply fell. Not “The Gold Bug,” which sank as lead in the mighty waters (to quote Moses’ assessment of Pharaoh’s chariots). And not “The Murders in the Rue Morgue,” unslated for resurrection until much later. The answer falls outside the experience of all but the most dedicated scholars of Poe’s work: an apparently forgettable (and entirely forgotten) little textbook of 1839, titled The Conchologist’s First Book: or, A System of Testaceous Malacology, Arranged Expressly for the Use of Schools (see figures 30 and 31 for Poe’s own ID, if you doubt the claim and attribution). The first edition sold out in two months, leading to a second and enlarged version in 1840, and a third in 1845. Poor Poe probably only received a flat fee of fifty bucks for his role in the entire and (as we shall see) peculiar enterprise.

  Figure 30.

  Figure 31.

  Everything about this curious work has presented a total puzzle and gnawing embarrassment to Poe scholars. First of all, no one has ever been able to figure out why he wrote the book, or ever got roped into such a project. Absolutely nothing in Poe’s life and experience—he was, after all, the ultimate city boy and literary character—suggests any abiding interest, or even a sliver of concern, for natural history in any form.

  The circumstances surrounding Poe’s composition help to set a context, but, in another sense, have only deepened the mystery and enhanced the odor of disrespectability. Poe’s friend Thomas Wyatt had, in 1838, published a lavish and expensive book on mollusk shells, retailing for eight dollars a copy. Sales were predictably slow, and Wyatt wished to produce a shorter and cheaper edition—especially since he made much of his living as a traveling lecturer on his generation’s version of what would later be called the “Chautauqua circuit,” serving local people eager for some education—the athenaeums, natural history clubs, and ladies’ reading circles of America’s isolated towns. Lecturers received fees for these mini-courses, but also supplemented their incomes by selling texts and pamphlets to accompany their lectures (just as modern musicians flog their CDs at intermissions between sets at coffee-house performances).

  However, Wyatt’s publishers understandably objected, citing a reasonable concern that their fancy edition would then become entirely unsellable. Wyatt, still wishing to proceed but fearing legal action should he publish the shorter version under his own name, sought a surrogate presence unlikely to attract litigation. At this point the plot thickens and the conventional shame
accretes.

  Literary scholars have been virtually unanimous in two characterizations of Poe’s only reprinted work, with the second claim worse than the first. To begin with the lesser charge, nearly all critics brand The Conchologist’s First Book as pure hackwork bearing no relation either to Poe’s virtues or to his career. I surveyed all the standard biographies when I wrote my original article on Poe’s greatest hit. The following sample presents a clear and uncontroverted consensus: F. T. Zumbach states that “it didn’t bear even the slightest relevance to Poe’s literary career.” Julian Symons, an excellent writer of detective fiction as well as a literary biographer, writes that Poe “put his name to a piece of hackwork.” David Sinclair describes The Conchologist’s First Book as “a piece of shameful hackwork to which only desperation could have driven him.” Jeffry Meyers labels the book as Poe’s “grossest piece of hackwork.”

 

‹ Prev